* Switch to train_dataset() function in train CLI
* Fixes for pipe() methods in pipeline components
* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`
* Update Parser.pipe() for Examples
* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s
* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)
* Fixes to Example implementation in spacy.gold
* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`
* Head of 0 are not treated as unset
* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)
* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example
* Don't clobber `examples` variable in `iter_gold_docs()`
* Add/modify gold tests for handling projectivity
* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)
* Add test for projective train vs. nonprojective dev versions of the
same `Doc`
* Handle ignore_misaligned as arg rather than attr
Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.
Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).
* Remove unused attrs from gold.pxd
Remove `ignore_misaligned` and `make_projective` from `gold.pxd`
* Refer to Example.goldparse in iter_gold_docs()
Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError
* Update test for ignore_misaligned
* Switch from mecab-python3 to fugashi
mecab-python3 has been the best MeCab binding for a long time but it's
not very actively maintained, and since it's based on old SWIG code
distributed with MeCab there's a limit to how effectively it can be
maintained.
Fugashi is a new Cython-based MeCab wrapper I wrote. Since it's not
based on the old SWIG code it's easier to keep it current and make small
deviations from the MeCab C/C++ API where that makes sense.
* Change mecab-python3 to fugashi in setup.cfg
* Change "mecab tags" to "unidic tags"
The tags come from MeCab, but the tag schema is specified by Unidic, so
it's more proper to refer to it that way.
* Update conftest
* Add fugashi link to external deps list for Japanese
* Detect more empty matches in tokenizer.explain()
* Include a few languages in explain non-slow tests
Mark a few languages in tokenizer.explain() tests as not slow so they're
run by default.
* Expose tokenizer rules as a property
Expose the tokenizer rules property in the same way as the other core
properties. (The cache resetting is overkill, but consistent with
`from_bytes` for now.)
Add tests and update Tokenizer API docs.
* Update Hungarian punctuation to remove empty string
Update Hungarian punctuation definitions so that `_units` does not match
an empty string.
* Use _load_special_tokenization consistently
Use `_load_special_tokenization()` and have it to handle `None` checks.
* Fix precedence of `token_match` vs. special cases
Remove `token_match` check from `_split_affixes()` so that special cases
have precedence over `token_match`. `token_match` is checked only before
infixes are split.
* Add `make_debug_doc()` to the Tokenizer
Add `make_debug_doc()` to the Tokenizer as a working implementation of
the pseudo-code in the docs.
Add a test (marked as slow) that checks that `nlp.tokenizer()` and
`nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens
for all languages that have `examples.sentences` that can be imported.
* Update tokenization usage docs
Update pseudo-code and algorithm description to correspond to
`nlp.tokenizer.make_debug_doc()` with example debugging usage.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Revert "Update Hungarian punctuation to remove empty string"
This reverts commit f0a577f7a5.
* Rework `make_debug_doc()` as `explain()`
Rework `make_debug_doc()` as `explain()`, which returns a list of
`(pattern_string, token_string)` tuples rather than a non-standard
`Doc`. Update docs and tests accordingly, leaving the visualization for
future work.
* Handle cases with bad tokenizer patterns
Detect when tokenizer patterns match empty prefixes and suffixes so that
`explain()` does not hang on bad patterns.
* Remove unused displacy image
* Add tokenizer.explain() to usage docs
* Generalize handling of tokenizer special cases
Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.
Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:
* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes
Existing tests/settings that couldn't be preserved as before:
* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again
When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.
* Remove accidentally added test case
* Really remove accidentally added test
* Reload special cases when necessary
Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.
* Update error code number
* Fix offset and whitespace in Matcher special cases
* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case
* Improve cache flushing in tokenizer
* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21
* Remove reinitialized PreshMaps on cache flush
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Use special Matcher only for cases with affixes
* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
* Additionally include specials cache checks while splitting on infixes
* Since the special Matcher needs consistent affix-only tokenization
for the special cases themselves, introduce the argument
`with_special_cases` in order to do tokenization with or without
specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes
* Replace PhraseMatcher with Aho-Corasick
Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.
The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.
Fixes#4308.
* Restore support for pickling
* Fix internal keyword add/remove for numpy arrays
* Add test for #4248, clean up test
* Improve efficiency of special cases handling
* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
* Process merge/splits in one pass without repeated token shifting
* Merge in place if no splits
* Update error message number
* Remove UD script modifications
Only used for timing/testing, should be a separate PR
* Remove final traces of UD script modifications
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Add missing loop for match ID set in search loop
* Remove cruft in matching loop for partial matches
There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.
* Replace dict trie with MapStruct trie
* Fix how match ID hash is stored/added
* Update fix for match ID vocab
* Switch from map_get_unless_missing to map_get
* Switch from numpy array to Token.get_struct_attr
Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.
Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)
* Restructure imports to export find_matches
* Implement full remove()
Remove unnecessary trie paths and free unused maps.
Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.
* Switch to PhraseMatcher.find_matches
* Switch to local cdef functions for span filtering
* Switch special case reload threshold to variable
Refer to variable instead of hard-coded threshold
* Move more of special case retokenize to cdef nogil
Move as much of the special case retokenization to nogil as possible.
* Rewrap sort as stdsort for OS X
* Rewrap stdsort with specific types
* Switch to qsort
* Fix merge
* Improve cmp functions
* Fix realloc
* Fix realloc again
* Initialize span struct while retokenizing
* Temporarily skip retokenizing
* Revert "Move more of special case retokenize to cdef nogil"
This reverts commit 0b7e52c797.
* Revert "Switch to qsort"
This reverts commit a98d71a942.
* Fix specials check while caching
* Modify URL test with emoticons
The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.
* Refactor _apply_special_cases()
* Use cdef ints for span info used in multiple spots
* Modify _filter_special_spans() to prefer earlier
Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.
* Replace MatchStruct with Entity
Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.
* Replace Entity with more general SpanC
* Replace MatchStruct with SpanC
* Add error in debug-data if no dev docs are available (see #4575)
* Update azure-pipelines.yml
* Revert "Update azure-pipelines.yml"
This reverts commit ed1060cf59.
* Use latest wasabi
* Reorganise install_requires
* add dframcy to universe.json (#4580)
* Update universe.json [ci skip]
* Fix multiprocessing for as_tuples=True (#4582)
* Fix conllu script (#4579)
* force extensions to avoid clash between example scripts
* fix arg order and default file encoding
* add example config for conllu script
* newline
* move extension definitions to main function
* few more encodings fixes
* Add load_from_docbin example [ci skip]
TODO: upload the file somewhere
* Update README.md
* Add warnings about 3.8 (resolves#4593) [ci skip]
* Fixed typo: Added space between "recognize" and "various" (#4600)
* Fix DocBin.merge() example (#4599)
* Replace function registries with catalogue (#4584)
* Replace functions registries with catalogue
* Update __init__.py
* Fix test
* Revert unrelated flag [ci skip]
* Bugfix/dep matcher issue 4590 (#4601)
* add contributor agreement for prilopes
* add test for issue #4590
* fix on_match params for DependencyMacther (#4590)
* Minor updates to language example sentences (#4608)
* Add punctuation to Spanish example sentences
* Combine multilanguage examples for lang xx
* Add punctuation to nb examples
* Always realloc to a larger size
Avoid potential (unlikely) edge case and cymem error seen in #4604.
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* OrigAnnot class instead of gold.orig_annot list of zipped tuples
* from_orig to replace from_annot_tuples
* rename to RawAnnot
* some unit tests for GoldParse creation and internal format
* removing orig_annot and switching to lists instead of tuple
* rewriting tuples to use RawAnnot (+ debug statements, WIP)
* fix pop() changing the data
* small fixes
* pop-append fixes
* return RawAnnot for existing GoldParse to have uniform interface
* clean up imports
* fix merge_sents
* add unit test for 4402 with new structure (not working yet)
* introduce DocAnnot
* typo fixes
* add unit test for merge_sents
* rename from_orig to from_raw
* fixing unit tests
* fix nn parser
* read_annots to produce text, doc_annot pairs
* _make_golds fix
* rename golds_to_gold_annots
* small fixes
* fix encoding
* have golds_to_gold_annots use DocAnnot
* missed a spot
* merge_sents as function in DocAnnot
* allow specifying only part of the token-level annotations
* refactor with Example class + underlying dicts
* pipeline components to work with Example objects (wip)
* input checking
* fix yielding
* fix calls to update
* small fixes
* fix scorer unit test with new format
* fix kwargs order
* fixes for ud and conllu scripts
* fix reading data for conllu script
* add in proper errors (not fixed numbering yet to avoid merge conflicts)
* fixing few more small bugs
* fix EL script
* Rework Chinese language initialization
* Create a `ChineseTokenizer` class
* Modify jieba post-processing to handle whitespace correctly
* Modify non-jieba character tokenization to handle whitespace correctly
* Add a `create_tokenizer()` method to `ChineseDefaults`
* Load lexical attributes
* Update Chinese tag_map for UD v2
* Add very basic Chinese tests
* Test tokenization with and without jieba
* Test `like_num` attribute
* Fix try_jieba_import()
* Fix zh code formatting
The model registry refactor of the Tok2Vec function broke loading models
trained with the previous function, because the model tree was slightly
different. Specifically, the new function wrote:
concatenate(norm, prefix, suffix, shape)
To build the embedding layer. In the previous implementation, I had used
the operator overloading shortcut:
( norm | prefix | suffix | shape )
This actually gets mapped to a binary association, giving something
like:
concatenate(norm, concatenate(prefix, concatenate(suffix, shape)))
This is a different tree, so the layers iterate differently and we
loaded the weights wrongly.
* Xfail new tokenization test
* Put new alignment behind feature flag
* Move USE_ALIGN to top of the file [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
The `Matcher` in `merge_subtokens()` returns all possible subsequences
of `subtok`, so for sequences of two or more subtoks it's necessary to
filter the matches so that the retokenizer is only merging the longest
matches with no overlapping spans.
* Add arch for MishWindowEncoder
* Support mish in tok2vec and conv window >=2
* Pass new tok2vec settings from parser
* Syntax error
* Fix tok2vec setting
* Fix registration of MishWindowEncoder
* Fix receptive field setting
* Fix mish arch
* Pass more options from parser
* Support more tok2vec options in pretrain
* Require thinc 7.3
* Add docs [ci skip]
* Require thinc 7.3.0.dev0 to run CI
* Run black
* Fix typo
* Update Thinc version
Co-authored-by: Ines Montani <ines@ines.io>
* Flag to ignore examples with mismatched raw/gold text
After #4525, we're seeing some alignment failures on our OntoNotes data. I think we actually have fixes for most of these cases.
In general it's better to fix the data, but it seems good to allow the GoldCorpus class to just skip cases where the raw text doesn't
match up to the gold words. I think previously we were silently ignoring these cases.
* Try to fix test on Python 2.7
The previous version worked with previous thinc, but only
because some thinc ops happened to have gpu/cpu compatible
implementations. It's better to call the right Ops instance.
* Fix get labels for textcat
* Fix char_embed for gpu
* Revert "Fix char_embed for gpu"
This reverts commit 055b9a9e85.
* Fix passing of cats in gold.pyx
* Revert "Match pop with append for training format (#4516)"
This reverts commit 8e7414dace.
* Fix popping gold parses
* Fix handling of cats in gold tuples
* Fix name
* Fix ner_multitask_objective script
* Add test for 4402
* trying to fix script - not succesful yet
* match pop() with extend() to avoid changing the data
* few more pop-extend fixes
* reinsert deleted print statement
* fix print statement
* add last tested version
* append instead of extend
* add in few comments
* quick fix for 4402 + unit test
* fixing number of docs (not counting cats)
* more fixes
* fix len
* print tmp file instead of using data from examples dir
* print tmp file instead of using data from examples dir (2)
* Add work in progress
* Update analysis helpers and component decorator
* Fix porting of docstrings for Python 2
* Fix docstring stuff on Python 2
* Support meta factories when loading model
* Put auto pipeline analysis behind flag for now
* Analyse pipes on remove_pipe and replace_pipe
* Move analysis to root for now
Try to find a better place for it, but it needs to go for now to avoid circular imports
* Simplify decorator
Don't return a wrapped class and instead just write to the object
* Update existing components and factories
* Add condition in factory for classes vs. functions
* Add missing from_nlp classmethods
* Add "retokenizes" to printed overview
* Update assigns/requires declarations of builtins
* Only return data if no_print is enabled
* Use multiline table for overview
* Don't support Span
* Rewrite errors/warnings and move them to spacy.errors
* Implement new API for {Phrase}Matcher.add (backwards-compatible)
* Update docs
* Also update DependencyMatcher.add
* Update internals
* Rewrite tests to use new API
* Add basic check for common mistake
Raise error with suggestion if user likely passed in a pattern instead of a list of patterns
* Fix typo [ci skip]
* Update English tag_map
Update English tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
* Update German tag_map
Update German tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
* Add missing Tiger dependencies to glossary
* Add quotes to definition of TO
* Update POS/TAG tables in docs
Update POS/TAG tables for English and German docs using current
information generated from the tag_maps and GLOSSARY.
* Update warning that -PRON- is specific to English
* Revert docs to default JSON output with convert
* Revert "Revert docs to default JSON output with convert"
This reverts commit 6b78c048f1.
* Support train dict format as JSONL
* Add (overly simple) check for dict vs. tuple to read JSONL lines as
either train dicts or train tuples
* Extend JSON/JSONL roundtrip conversion tests using `docs_to_json()`
and `GoldCorpus.train_tuples`
* Revert docs to default JSON output with convert
* raise specific error when removing a matcher rule that doesn't exist
* rephrasing
* goldparse init: allocate fields only if doc is not empty
* avoid zero length alloc in saving tokenizer cache
* avoid allocating zero length mem in matcher
* asserts to avoid allocating zero length mem
* fix zero-length allocation in matcher
* bump cymem version
* revert cymem version bump
* Free pointers in ActivationsC
* Restructure alloc/free for parser activations
* Rewrite/restructure to have allocation and free in parallel functions
in `_parser_model` rather than partially in `_parseC()` in `Parser`.
* Remove `resize_activations` from `_parser_model.pxd`.
* Create syntax_iterators.py
Replica of spacy/lang/fr/syntax_iterators.py
* Added import statements for SYNTAX_ITERATORS
* Create gustavengstrom.md
* Added "dobj" to list of labels in noun_chunks method and a test_noun_chunks method to the Swedish language model.
* Delete README-checkpoint.md
Co-authored-by: Gustav <gustav@davcon.se>
Co-authored-by: Ines Montani <ines@ines.io>
* Error for ill-formed input to iob_to_biluo()
Check for empty label in iob_to_biluo(), which can result from
ill-formed input.
* Check for empty NER label in debug-data