Similar to how vectors are handled, move the vocab lookups to be loaded
at the start of training rather than when the vocab is initialized,
since the vocab doesn't have access to the full config when it's
created.
The option moves from `nlp.load_vocab_data` to `training.lookups`.
Typically these tables will come from `spacy-lookups-data`, but any
`Lookups` object can be provided.
The loading from `spacy-lookups-data` is now strict, so configs for each
language should specify the exact tables required. This also makes it
easier to control whether the larger clusters and probs tables are
included.
To load `lexeme_norm` from `spacy-lookups-data`:
```
[training.lookups]
@misc = "spacy.LoadLookupsData.v1"
lang = ${nlp.lang}
tables = ["lexeme_norm"]
```
In order to make it easier to construct `Doc` objects as training data,
modify how missing and blocked entity tokens are set to prioritize
setting `O` and missing entity tokens for training purposes over setting
blocked entity tokens.
* `Doc.ents` setter sets tokens outside entity spans to `O` regardless
of the current state of each token
* For `Doc.ents`, setting a span with a missing label sets the `ent_iob`
to missing instead of blocked
* `Doc.block_ents(spans)` marks spans as hard `O` for use with the
`EntityRecognizer`
* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
* `Doc.has_annotation(attr)` returns `True` for partial annotation
* `Doc.has_annotation(attr, require_complete=True)` returns `True` for
complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Clean up spacy.tokens
* Update `set_children_from_heads`:
* Don't check `dep` when setting lr_* or sentence starts
* Set all non-sentence starts to `False`
* Use `set_children_from_heads` in `Token.head` setter
* Reduce similar/duplicate code (admittedly adds a bit of overhead)
* Update sentence starts consistently
* Remove unused `Doc.set_parse`
* Minor changes:
* Declare cython variables (to avoid cython warnings)
* Clean up imports
* Modify set_children_from_heads to set token range
Modify `set_children_from_heads` so that it adjust tokens within a
specified range rather then the whole document.
Modify the `Token.head` setter to adjust only the tokens affected by the
new head assignment.
For languages without provided models and with lemmatizer rules in
`spacy-lookups-data`, make the rule-based lemmatizer the default:
Bengali, Persian, Norwegian, Swedish
Modify `Token.morph` property so that `Token.c.morph` can be reset back
to an internal value of `0`. Allow setting `Token.morph` from a hash as
long as the morph string is already in the `StringStore`, setting it
indirectly through `Token.morph_` so that the value is added to the
morphology. If the hash is not in the `StringStore`, raise an error.
* raise error if no valid Example objects were found during initialization
* fix max_length parameter
* remove commit from other branch
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>