Commit Graph

172 Commits

Author SHA1 Message Date
Paul O'Leary McCann
dca2e8c644
Minor NEL type fixes (#10860)
* Fix TODO about typing

Fix was simple: just request an array2f.

* Add type ignore

Maxout has a more restrictive type than the residual layer expects (only
Floats2d vs any Floats).

* Various cleanup

This moves a lot of lines around but doesn't change any functionality.
Details:

1. use `continue` to reduce indentation
2. move sentence doc building inside conditional since it's otherwise
   unused
3. reduces some temporary assignments
2022-06-01 00:41:28 +02:00
Daniël de Kok
85dd2b6c04
Parser: use C saxpy/sgemm provided by the Ops implementation (#10773)
* Parser: use C saxpy/sgemm provided by the Ops implementation

This is a backport of https://github.com/explosion/spaCy/pull/10747
from the parser refactor branch. It eliminates the explicit calls
to BLIS, instead using the saxpy/sgemm provided by the Ops
implementation.

This allows us to use Accelerate in the parser on M1 Macs (with
an updated thinc-apple-ops).

Performance of the de_core_news_lg pipe:

BLIS 0.7.0, no thinc-apple-ops:  6385 WPS
BLIS 0.7.0, thinc-apple-ops:    36455 WPS
BLIS 0.9.0, no thinc-apple-ops: 19188 WPS
BLIS 0.9.0, thinc-apple-ops:    36682 WPS
This PR, thinc-apple-ops:       38726 WPS

Performance of the de_core_news_lg pipe (only tok2vec -> parser):

BLIS 0.7.0, no thinc-apple-ops: 13907 WPS
BLIS 0.7.0, thinc-apple-ops:    73172 WPS
BLIS 0.9.0, no thinc-apple-ops: 41576 WPS
BLIS 0.9.0, thinc-apple-ops:    72569 WPS
This PR, thinc-apple-ops:       87061 WPS

* Require thinc >=8.1.0,<8.2.0

* Lower thinc lowerbound to 8.1.0.dev0

* Use best CPU ops for CBLAS when the parser model is on the GPU

* Fix another unguarded cblas() call

* Fix: use ops as a shorthand for self.model.ops

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
2022-05-27 11:20:52 +02:00
Richard Hudson
32954c3bcb
Fix issues for Mypy 0.950 and Pydantic 1.9.0 (#10786)
* Make changes to typing

* Correction

* Format with black

* Corrections based on review

* Bumped Thinc dependency version

* Bumped blis requirement

* Correction for older Python versions

* Update spacy/ml/models/textcat.py

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

* Corrections based on review feedback

* Readd deleted docstring line

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2022-05-25 09:33:54 +02:00
Raphael Mitsch
f5390e278a
Refactor error messages to remove hardcoded strings (#10729)
* Use custom error msg instead of hardcoded string: replaced remaining hardcoded error message strings.

* Use custom error msg instead of hardcoded string: fixing faulty Errors import.
2022-05-02 13:38:46 +02:00
Daniël de Kok
e5debc68e4
Tagger: use unnormalized probabilities for inference (#10197)
* Tagger: use unnormalized probabilities for inference

Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).

* Add spacy.Tagger.v2 with configurable normalization

Normalization of probabilities is disabled by default to improve
performance.

* Update documentation, models, and tests to spacy.Tagger.v2

* Move Tagger.v1 to spacy-legacy

* docs/architectures: run prettier

* Unnormalized softmax is now a Softmax_v2 option

* Require thinc 8.0.14 and spacy-legacy 3.0.9
2022-03-15 14:15:31 +01:00
Paul O'Leary McCann
91acc3ea75
Fix entity linker batching (#9669)
* Partial fix of entity linker batching

* Add import

* Better name

* Add `use_gold_ents` option, docs

* Change to v2, create stub v1, update docs etc.

* Fix error type

Honestly no idea what the right type to use here is.
ConfigValidationError seems wrong. Maybe a NotImplementedError?

* Make mypy happy

* Add hacky fix for init issue

* Add legacy pipeline entity linker

* Fix references to class name

* Add __init__.py for legacy

* Attempted fix for loss issue

* Remove placeholder V1

* formatting

* slightly more interesting train data

* Handle batches with no usable examples

This adds a test for batches that have docs but not entities, and a
check in the component that detects such cases and skips the update step
as thought the batch were empty.

* Remove todo about data verification

Check for empty data was moved further up so this should be OK now - the
case in question shouldn't be possible.

* Fix gradient calculation

The model doesn't know which entities are not in the kb, so it generates
embeddings for the context of all of them.

However, the loss does know which entities aren't in the kb, and it
ignores them, as there's no sensible gradient.

This has the issue that the gradient will not be calculated for some of
the input embeddings, which causes a dimension mismatch in backprop.
That should have caused a clear error, but with numpyops it was causing
nans to happen, which is another problem that should be addressed
separately.

This commit changes the loss to give a zero gradient for entities not in
the kb.

* add failing test for v1 EL legacy architecture

* Add nasty but simple working check for legacy arch

* Clarify why init hack works the way it does

* Clarify use_gold_ents use case

* Fix use gold ents related handling

* Add tests for no gold ents and fix other tests

* Use aligned ents function (not working)

This doesn't actually work because the "aligned" ents are gold-only. But
if I have a different function that returns the intersection, *then*
this will work as desired.

* Use proper matching ent check

This changes the process when gold ents are not used so that the
intersection of ents in the pred and gold is used.

* Move get_matching_ents to Example

* Use model attribute to check for legacy arch

* Rename flag

* bump spacy-legacy to lower 3.0.9

Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 09:17:36 +01:00
github-actions[bot]
91ccacea12
Auto-format code with black (#10209)
* Auto-format code with black

* add black requirement to dev dependencies and pin to 22.x

* ignore black dependency for comparison with setup.cfg

Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2022-02-06 16:30:30 +01:00
Daniël de Kok
50d2a2c930
User fewer Vector internals (#9879)
* Use Vectors.shape rather than Vectors.data.shape

* Use Vectors.size rather than Vectors.data.size

* Add Vectors.to_ops to move data between different ops

* Add documentation for Vector.to_ops
2022-01-18 17:14:35 +01:00
Peter Baumgartner
72abf9e102
MultiHashEmbed vector docs correction (#9918) 2021-12-27 11:18:08 +01:00
Adriane Boyd
c9baf9d196
Fix spancat for empty docs and zero suggestions (#9654)
* Fix spancat for empty docs and zero suggestions

* Use ops.xp.zeros in test
2021-11-15 12:40:55 +01:00
Adriane Boyd
07dea324f6 Merge remote-tracking branch 'upstream/develop' into chore/switch-to-master-v3.2.0 2021-11-03 15:32:18 +01:00
Paul O'Leary McCann
c1cc94a33a
Fix typo about receptive field size (#9564) 2021-11-03 15:16:55 +01:00
Adriane Boyd
bb26550e22
Fix StaticVectors after floret+mypy merge (#9566) 2021-10-29 16:25:43 +02:00
Adriane Boyd
c053f158c5
Add support for floret vectors (#8909)
* Add support for fasttext-bloom hash-only vectors

Overview:

* Extend `Vectors` to have two modes: `default` and `ngram`
  * `default` is the default mode and equivalent to the current
    `Vectors`
  * `ngram` supports the hash-only ngram tables from `fasttext-bloom`
* Extend `spacy.StaticVectors.v2` to handle both modes with no changes
  for `default` vectors
* Extend `spacy init vectors` to support ngram tables

The `ngram` mode **only** supports vector tables produced by this
fork of fastText, which adds an option to represent all vectors using
only the ngram buckets table and which uses the exact same ngram
generation algorithm and hash function (`MurmurHash3_x64_128`).
`fasttext-bloom` produces an additional `.hashvec` table, which can be
loaded by `spacy init vectors --fasttext-bloom-vectors`.

https://github.com/adrianeboyd/fastText/tree/feature/bloom

Implementation details:

* `Vectors` now includes the `StringStore` as `Vectors.strings` so that
  the API can stay consistent for both `default` (which can look up from
  `str` or `int`) and `ngram` (which requires `str` to calculate the
  ngrams).

* In ngram mode `Vectors` uses a default `Vectors` object as a cache
  since the ngram vectors lookups are relatively expensive.

  * The default cache size is the same size as the provided ngram vector
    table.

  * Once the cache is full, no more entries are added. The user is
    responsible for managing the cache in cases where the initial
    documents are not representative of the texts.

  * The cache can be resized by setting `Vectors.ngram_cache_size` or
    cleared with `vectors._ngram_cache.clear()`.

* The API ends up a bit split between methods for `default` and for
  `ngram`, so functions that only make sense for `default` or `ngram`
  include warnings with custom messages suggesting alternatives where
  possible.

* `Vocab.vectors` becomes a property so that the string stores can be
  synced when assigning vectors to a vocab.

* `Vectors` serializes its own config settings as `vectors.cfg`.

* The `Vectors` serialization methods have added support for `exclude`
  so that the `Vocab` can exclude the `Vectors` strings while serializing.

Removed:

* The `minn` and `maxn` options and related code from
  `Vocab.get_vector`, which does not work in a meaningful way for default
  vector tables.

* The unused `GlobalRegistry` in `Vectors`.

* Refactor to use reduce_mean

Refactor to use reduce_mean and remove the ngram vectors cache.

* Rename to floret

* Rename to floret in error messages

* Use --vectors-mode in CLI, vector init

* Fix vectors mode in init

* Remove unused var

* Minor API and docstrings adjustments

* Rename `--vectors-mode` to `--mode` in `init vectors` CLI
* Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support
  both modes.
* Minor updates to Vectors docstrings.

* Update API docs for Vectors and init vectors CLI

* Update types for StaticVectors
2021-10-27 14:08:31 +02:00
github-actions[bot]
b0b115ff39
Auto-format code with black (#9530)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2021-10-22 13:03:10 +02:00
Daniël de Kok
d0631e3005
Replace use_ops("numpy") by use_ops("cpu") in the parser (#9501)
* Replace use_ops("numpy") by use_ops("cpu") in the parser

This ensures that the best available CPU implementation is chosen
(e.g. Thinc Apple Ops on macOS).

* Run spaCy tests with apple-thinc-ops on macOS
2021-10-21 11:22:45 +02:00
Daniël de Kok
1f05f56433
Add the spacy.models_with_nvtx_range.v1 callback (#9124)
* Add the spacy.models_with_nvtx_range.v1 callback

This callback recursively adds NVTX ranges to the Models in each pipe in
a pipeline.

* Fix create_models_with_nvtx_range type signature

* NVTX range: wrap models of all trainable pipes jointly

This avoids that (sub-)models that are shared between pipes get wrapped
twice.

* NVTX range callback: make color configurable

Add forward_color and backprop_color options to set the color for the
NVTX range.

* Move create_models_with_nvtx_range to spacy.ml

* Update create_models_with_nvtx_range for thinc changes

with_nvtx_range now updates an existing node, rather than returning a
wrapper node. So, we can simply walk over the nodes and update them.

* NVTX: use after_pipeline_creation in example
2021-10-20 11:59:48 +02:00
Edward
a7cb8de0d7
Fix assertion error in staticvectors (#9481)
* Fix assertion error in staticvectors

* Update spacy/ml/staticvectors.py

* Update spacy/ml/staticvectors.py

Co-authored-by: Ines Montani <ines@ines.io>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Ines Montani <ines@ines.io>
2021-10-18 09:10:45 +02:00
Connor Brinton
657af5f91f
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167)
* 🚨 Ignore all existing Mypy errors

* 🏗 Add Mypy check to CI

* Add types-mock and types-requests as dev requirements

* Add additional type ignore directives

* Add types packages to dev-only list in reqs test

* Add types-dataclasses for python 3.6

* Add ignore to pretrain

* 🏷 Improve type annotation on `run_command` helper

The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.

* 🔧 Allow variable type redefinition in limited contexts

These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:

```python
def process(items: List[str]) -> None:
    # 'items' has type List[str]
    items = [item.split() for item in items]
    # 'items' now has type List[List[str]]
    ...
```

This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`

These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.

* 🏷 Add type annotation to converters mapping

* 🚨 Fix Mypy error in convert CLI argument verification

* 🏷 Improve type annotation on `resolve_dot_names` helper

* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`

* 🏷 Add type annotations for more `Vocab` attributes

* 🏷 Add loose type annotation for gold data compilation

* 🏷 Improve `_format_labels` type annotation

* 🏷 Fix `get_lang_class` type annotation

* 🏷 Loosen return type of `Language.evaluate`

* 🏷 Don't accept `Scorer` in `handle_scores_per_type`

* 🏷 Add `string_to_list` overloads

* 🏷 Fix non-Optional command-line options

* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`

*  Install `typing_extensions` in Python 3.8+

The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.

Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.

These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.

* 🏷 Improve type annotation for `Language.pipe`

These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.

Fixes #8772

*  Don't install `typing-extensions` in Python 3.8+

After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉

These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.

* resolve mypy errors for Strict pydantic types

* refactor code to avoid missing return statement

* fix types of convert CLI command

* avoid list-set confustion in debug_data

* fix typo and formatting

* small fixes to avoid type ignores

* fix types in profile CLI command and make it more efficient

* type fixes in projects CLI

* put one ignore back

* type fixes for render

* fix render types - the sequel

* fix BaseDefault in language definitions

* fix type of noun_chunks iterator - yields tuple instead of span

* fix types in language-specific modules

* 🏷 Expand accepted inputs of `get_string_id`

`get_string_id` accepts either a string (in which case it returns its 
ID) or an ID (in which case it immediately returns the ID). These 
changes extend the type annotation of `get_string_id` to indicate that 
it can accept either strings or IDs.

* 🏷 Handle override types in `combine_score_weights`

The `combine_score_weights` function allows users to pass an `overrides` 
mapping to override data extracted from the `weights` argument. Since it 
allows `Optional` dictionary values, the return value may also include 
`Optional` dictionary values.

These changes update the type annotations for `combine_score_weights` to 
reflect this fact.

* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`

* 🏷 Fix redefinition of `wandb_logger`

These changes fix the redefinition of `wandb_logger` by giving a 
separate name to each `WandbLogger` version. For 
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` 
as `wandb_logger` for now.

* more fixes for typing in language

* type fixes in model definitions

* 🏷 Annotate `_RandomWords.probs` as `NDArray`

* 🏷 Annotate `tok2vec` layers to help Mypy

* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6

Also remove an import that I forgot to move to the top of the module 😅

* more fixes for matchers and other pipeline components

* quick fix for entity linker

* fixing types for spancat, textcat, etc

* bugfix for tok2vec

* type annotations for scorer

* add runtime_checkable for Protocol

* type and import fixes in tests

* mypy fixes for training utilities

* few fixes in util

* fix import

* 🐵 Remove unused `# type: ignore` directives

* 🏷 Annotate `Language._components`

* 🏷 Annotate `spacy.pipeline.Pipe`

* add doc as property to span.pyi

* small fixes and cleanup

* explicit type annotations instead of via comment

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 15:21:40 +02:00
j-frei
462b009648
Correct parser.py use_upper param info (#9180) 2021-09-10 16:19:58 +02:00
Adriane Boyd
f9fd2889b7
Use 0-vector for OOV lexemes (#8639) 2021-07-13 14:48:12 +10:00
Sofie Van Landeghem
e7d747e3ee
TransitionBasedParser.v1 to legacy (#8586)
* TransitionBasedParser.v1 to legacy

* register sublayers

* bump spacy-legacy to 3.0.7
2021-07-06 15:26:45 +02:00
Ines Montani
7f65902702
Merge pull request #8522 from adrianeboyd/chore/update-flake8
Update flake8 version in reqs and CI
2021-06-28 21:46:06 +10:00
Adriane Boyd
5eeb25f043 Tidy up code 2021-06-28 12:08:15 +02:00
Adriane Boyd
4b0ed73ed4 Update flake8 version in reqs and CI
* Update some unneeded forward refs related to flake8 checks
2021-06-28 11:29:36 +02:00
Matthew Honnibal
f9946154d9
Add SpanCategorizer component (#6747)
* Draft spancat model

* Add spancat model

* Add test for extract_spans

* Add extract_spans layer

* Upd extract_spans

* Add spancat model

* Add test for spancat model

* Upd spancat model

* Update spancat component

* Upd spancat

* Update spancat model

* Add quick spancat test

* Import SpanCategorizer

* Fix SpanCategorizer component

* Import SpanGroup

* Fix span extraction

* Fix import

* Fix import

* Upd model

* Update spancat models

* Add scoring, update defaults

* Update and add docs

* Fix type

* Update spacy/ml/extract_spans.py

* Auto-format and fix import

* Fix comment

* Fix type

* Fix type

* Update website/docs/api/spancategorizer.md

* Fix comment

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Better defense

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix labels list

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/ml/extract_spans.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/pipeline/spancat.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Set annotations during update

* Set annotations in spancat

* fix imports in test

* Update spacy/pipeline/spancat.py

* replace MaxoutLogistic with LinearLogistic

* fix config

* various small fixes

* remove set_annotations parameter in update

* use our beloved tupley format with recent support for doc.spans

* bugfix to allow renaming the default span_key (scores weren't showing up)

* use different key in docs example

* change defaults to better-working parameters from project (WIP)

* register spacy.extract_spans.v1 for legacy purposes

* Upd dev version so can build wheel

* layers instead of architectures for smaller building blocks

* Update website/docs/api/spancategorizer.md

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update website/docs/api/spancategorizer.md

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Include additional scores from overrides in combined score weights

* Parameterize spans key in scoring

Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.

* Use the (intentionally very short) default spans key `sc` in the
  `SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
  returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
  the key in the `getter` instead.

Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.

* Update website/docs/api/scorer.md

* Fix scorer for spans key containing underscore

* Increment version

* Add Spans to Evaluate CLI (#8439)

* Add Spans to Evaluate CLI

* Change to spans_key

* Add spans per_type output

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Fix spancat GPU issues (#8455)

* Fix GPU issues

* Require thinc >=8.0.6

* Switch to glorot_uniform_init

* Fix and test ngram suggester

* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests

Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>
2021-06-24 12:35:27 +02:00
Sofie Van Landeghem
e796aab4b3
Resizable textcat (#7862)
* implement textcat resizing for TextCatCNN

* resizing textcat in-place

* simplify code

* ensure predictions for old textcat labels remain the same after resizing (WIP)

* fix for softmax

* store softmax as attr

* fix ensemble weight copy and cleanup

* restructure slightly

* adjust documentation, update tests and quickstart templates to use latest versions

* extend unit test slightly

* revert unnecessary edits

* fix typo

* ensemble architecture won't be resizable for now

* use resizable layer (WIP)

* revert using resizable layer

* resizable container while avoid shape inference trouble

* cleanup

* ensure model continues training after resizing

* use fill_b parameter

* use fill_defaults

* resize_layer callback

* format

* bump thinc to 8.0.4

* bump spacy-legacy to 3.0.6
2021-06-16 11:45:00 +02:00
Sofie Van Landeghem
8729307e67
register extract_ngrams layer (#8358)
* register extract_ngrams layer

* fix import

* bump spacy-legacy to 3.0.6

* revert bump (wrong PR)
2021-06-14 10:30:30 +02:00
Vito De Tullio
3672464e25
applying suggestion to avoid mypy errors (#8265)
* applying suggestion to avoid mypy errors

* sign contributor agreement
2021-06-02 19:25:30 +10:00
Sofie Van Landeghem
e9037d8fc0
make EntityLinker robust for nO=None (#7930) 2021-05-06 18:14:47 +10:00
Adriane Boyd
36ecba224e
Set up GPU CI testing (#7293)
* Set up CI for tests with GPU agent

* Update tests for enabled GPU

* Fix steps filename

* Add parallel build jobs as a setting

* Fix test requirements

* Fix install test requirements condition

* Fix pipeline models test

* Reset current ops in prefer/require testing

* Fix more tests

* Remove separate test_models test

* Fix regression 5551

* fix StaticVectors for GPU use

* fix vocab tests

* Fix regression test 5082

* Move azure steps to .github and reenable default pool jobs

* Consolidate/rename azure steps

Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2021-04-22 14:58:29 +02:00
Adriane Boyd
d2bdaa7823
Replace negative rows with 0 in StaticVectors (#7674)
* Replace negative rows with 0 in StaticVectors

Replace negative row indices with 0-vectors in `StaticVectors`.

* Increase versions related to StaticVectors

* Increase versions of all architctures and layers related to
`StaticVectors`
* Improve efficiency of 0-vector operations

Parallel `spacy-legacy` PR: https://github.com/explosion/spacy-legacy/pull/5

* Update config defaults to new versions

* Update docs
2021-04-22 18:04:15 +10:00
Adriane Boyd
07b41c38ae
Register CharEmbed layer (#7805) 2021-04-19 18:39:34 +10:00
Sofie Van Landeghem
cd70c3cb79
Fixing pretrain (#7342)
* initialize NLP with train corpus

* add more pretraining tests

* more tests

* function to fetch tok2vec layer for pretraining

* clarify parameter name

* test different objectives

* formatting

* fix check for static vectors when using vectors objective

* clarify docs

* logger statement

* fix init_tok2vec and proc.initialize order

* test training after pretraining

* add init_config tests for pretraining

* pop pretraining block to avoid config validation errors

* custom errors
2021-03-09 14:01:13 +11:00
svlandeg
d900c55061 consistently use registry as callable 2021-03-02 17:56:28 +01:00
René Octavio Queiroz Dias
59271e887a
fix: TransformerListener with TextCatEnsemble (#6951)
* bug: Regression test
Issue #6946

* fix: Fix issue #6946

* chore: Remove regression test
2021-02-06 13:44:51 +01:00
Matthew Honnibal
ffc371350a
Avoid assuming encode.get_dim('nO') is set in tok2vec (#6800) 2021-01-24 14:37:33 +11:00
Sofie Van Landeghem
c8761b0e6e
rewrite Maxout layer as separate layers to avoid shape inference trouble (#6760) 2021-01-19 07:37:17 +08:00
Adriane Boyd
26c34ab8b0
Fix parser resizing for cupy (#6758) 2021-01-18 20:43:15 +01:00
Matthew Honnibal
c2a18e4fa3 Update textcat ensemble model 2021-01-19 02:53:02 +11:00
Ines Montani
a203e3dbb8 Support spacy-legacy via the registry 2021-01-15 21:42:40 +11:00
Ines Montani
b0b743597c Tidy up and auto-format 2021-01-15 11:57:36 +11:00
Sofie Van Landeghem
75d9019343
Fix types of Tok2Vec encoding architectures (#6442)
* fix TorchBiLSTMEncoder documentation

* ensure the types of the encoding Tok2vec layers are correct

* update references from v1 to v2 for the new architectures
2021-01-07 16:39:27 +11:00
Sofie Van Landeghem
3983bc6b1e
Fix Transformer width in TextCatEnsemble (#6431)
* add convenience method to determine tok2vec width in a model

* fix transformer tok2vec dimensions in TextCatEnsemble architecture

* init function should not be nested to avoid pickle issues
2021-01-06 12:44:04 +01:00
Ines Montani
991669c934 Tidy up and auto-format 2021-01-05 13:41:53 +11:00
Sofie Van Landeghem
282a3b49ea
Fix parser resizing when there is no upper layer (#6460)
* allow resizing of the parser model even when upper=False

* update from spacy.TransitionBasedParser.v1 to v2

* bugfix
2020-12-18 18:56:57 +08:00
Sofie Van Landeghem
cfc72c2995
Bugfix multi-label textcat reproducibility (#6481)
* add test for multi-label textcat reproducibility

* remove positive_label

* fix lengths dtype

* fix comments

* remove comment that we should not have forgotten :-)
2020-12-09 06:29:15 +08:00
Sofie Van Landeghem
de108ed3e8
Add specific error when StaticVectors can't read the vectors data (#6450) 2020-12-09 06:16:07 +08:00
Sofie Van Landeghem
f98a04434a
pretrain architectures (#6451)
* define new architectures for the pretraining objective

* add loss function as attr of the omdel

* cleanup

* cleanup

* shorten name

* fix typo

* remove unused error
2020-12-08 14:41:03 +08:00
Sofie Van Landeghem
a0c899a0ff
Fix textcat + transformer architecture (#6371)
* add pooling to textcat TransformerListener

* maybe_get_dim in case it's null
2020-11-10 20:14:47 +08:00