Similar to how vectors are handled, move the vocab lookups to be loaded
at the start of training rather than when the vocab is initialized,
since the vocab doesn't have access to the full config when it's
created.
The option moves from `nlp.load_vocab_data` to `training.lookups`.
Typically these tables will come from `spacy-lookups-data`, but any
`Lookups` object can be provided.
The loading from `spacy-lookups-data` is now strict, so configs for each
language should specify the exact tables required. This also makes it
easier to control whether the larger clusters and probs tables are
included.
To load `lexeme_norm` from `spacy-lookups-data`:
```
[training.lookups]
@misc = "spacy.LoadLookupsData.v1"
lang = ${nlp.lang}
tables = ["lexeme_norm"]
```
* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
* `Doc.has_annotation(attr)` returns `True` for partial annotation
* `Doc.has_annotation(attr, require_complete=True)` returns `True` for
complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Clean up spacy.tokens
* Update `set_children_from_heads`:
* Don't check `dep` when setting lr_* or sentence starts
* Set all non-sentence starts to `False`
* Use `set_children_from_heads` in `Token.head` setter
* Reduce similar/duplicate code (admittedly adds a bit of overhead)
* Update sentence starts consistently
* Remove unused `Doc.set_parse`
* Minor changes:
* Declare cython variables (to avoid cython warnings)
* Clean up imports
* Modify set_children_from_heads to set token range
Modify `set_children_from_heads` so that it adjust tokens within a
specified range rather then the whole document.
Modify the `Token.head` setter to adjust only the tokens affected by the
new head assignment.
For languages without provided models and with lemmatizer rules in
`spacy-lookups-data`, make the rule-based lemmatizer the default:
Bengali, Persian, Norwegian, Swedish
Modify `Token.morph` property so that `Token.c.morph` can be reset back
to an internal value of `0`. Allow setting `Token.morph` from a hash as
long as the morph string is already in the `StringStore`, setting it
indirectly through `Token.morph_` so that the value is added to the
morphology. If the hash is not in the `StringStore`, raise an error.
* ensure Language passes on valid examples for initialization
* fix tagger model initialization
* check for valid get_examples across components
* assume labels were added before begin_training
* fix senter initialization
* fix morphologizer initialization
* use methods to check arguments
* test textcat init, requires thinc>=8.0.0a31
* fix tok2vec init
* fix entity linker init
* use islice
* fix simple NER
* cleanup debug model
* fix assert statements
* fix tests
* throw error when adding a label if the output layer can't be resized anymore
* fix test
* add failing test for simple_ner
* UX improvements
* morphologizer UX
* assume begin_training gets a representative set and processes the labels
* remove assumptions for output of untrained NER model
* restore test for original purpose
Add official support for the `DependencyMatcher`. Redesign the pattern
specification. Fix and extend operator implementations. Update API docs
and add usage docs.
Patterns
--------
Refactor pattern structure to:
```
{
"LEFT_ID": str,
"REL_OP": str,
"RIGHT_ID": str,
"RIGHT_ATTRS": dict,
}
```
The first node contains only `RIGHT_ID` and `RIGHT_ATTRS` and all
subsequent nodes contain all four keys.
New operators
-------------
Because of the way patterns are constructed from left to right, it's
helpful to have `follows` operators along with `precedes` operators. Add
operators for simple precedes / follows alongside immediate precedes /
follows.
* `.*`: precedes
* `;`: immediately follows
* `;*`: follows
Operator fixes
--------------
* `<` and `<<` do not include the node itself
* Fix reversed order for all operators involving linear precedence (`.`,
all sibling operators)
* Linear precedence operators do not match nodes outside the same parse
Additional fixes
----------------
* Use v3 Matcher API
* Support `get` and `remove`
* Support pickling
* Prevent Tagger model init with 0 labels
Raise an error before trying to initialize a tagger model with 0 labels.
* Add dummy tagger label for test
* Remove tagless tagger model initializiation
* Fix error number after merge
* Add dummy tagger label to test
* Fix formatting
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>