* Make empty_kb() configurable.
* Format.
* Update docs.
* Be more specific in KB serialization test.
* Update KB serialization tests. Update docs.
* Remove doc update for batched candidate generation.
* Fix serialization of subclassed KB in tests.
* Format.
* Update docstring.
* Update docstring.
* Switch from pickle to json for custom field serialization.
* Try to fix doc.copy
* Set dev version
* Make vocab always own lexemes
* Change version
* Add SpanGroups.copy method
* Fix set_annotations during Parser.update
* Fix dict proxy copy
* Upd version
* Fix copying SpanGroups
* Fix set_annotations in parser.update
* Fix parser set_annotations during update
* Revert "Fix parser set_annotations during update"
This reverts commit eb138c89ed.
* Revert "Fix set_annotations in parser.update"
This reverts commit c6df0eafd0.
* Fix set_annotations during parser update
* Inc version
* Handle final states in get_oracle_sequence
* Inc version
* Try to fix parser training
* Inc version
* Fix
* Inc version
* Fix parser oracle
* Inc version
* Inc version
* Fix transition has_gold
* Inc version
* Try to use real histories, not oracle
* Inc version
* Upd parser
* Inc version
* WIP on rewrite parser
* WIP refactor parser
* New progress on parser model refactor
* Prepare to remove parser_model.pyx
* Convert parser from cdef class
* Delete spacy.ml.parser_model
* Delete _precomputable_affine module
* Wire up tb_framework to new parser model
* Wire up parser model
* Uncython ner.pyx and dep_parser.pyx
* Uncython
* Work on parser model
* Support unseen_classes in parser model
* Support unseen classes in parser
* Cleaner handling of unseen classes
* Work through tests
* Keep working through errors
* Keep working through errors
* Work on parser. 15 tests failing
* Xfail beam stuff. 9 failures
* More xfail. 7 failures
* Xfail. 6 failures
* cleanup
* formatting
* fixes
* pass nO through
* Fix empty doc in update
* Hackishly fix resizing. 3 failures
* Fix redundant test. 2 failures
* Add reference version
* black formatting
* Get tests passing with reference implementation
* Fix missing prints
* Add missing file
* Improve indexing on reference implementation
* Get non-reference forward func working
* Start rigging beam back up
* removing redundant tests, cf #8106
* black formatting
* temporarily xfailing issue 4314
* make flake8 happy again
* mypy fixes
* ensure labels are added upon predict
* cleanup remnants from merge conflicts
* Improve unseen label masking
Two changes to speed up masking by ~10%:
- Use a bool array rather than an array of float32.
- Let the mask indicate whether a label was seen, rather than
unseen. The mask is most frequently used to index scores for
seen labels. However, since the mask marked unseen labels,
this required computing an intermittent flipped mask.
* Write moves costs directly into numpy array (#10163)
This avoids elementwise indexing and the allocation of an additional
array.
Gives a ~15% speed improvement when using batch_by_sequence with size
32.
* Temporarily disable ner and rehearse tests
Until rehearse is implemented again in the refactored parser.
* Fix loss serialization issue (#10600)
* Fix loss serialization issue
Serialization of a model fails with:
TypeError: array(738.3855, dtype=float32) is not JSON serializable
Fix this using float conversion.
* Disable CI steps that require spacy.TransitionBasedParser.v2
After finishing the refactor, TransitionBasedParser.v2 should be
provided for backwards compat.
* Add back support for beam parsing to the refactored parser (#10633)
* Add back support for beam parsing
Beam parsing was already implemented as part of the `BeamBatch` class.
This change makes its counterpart `GreedyBatch`. Both classes are hooked
up in `TransitionModel`, selecting `GreedyBatch` when the beam size is
one, or `BeamBatch` otherwise.
* Use kwarg for beam width
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Avoid implicit default for beam_width and beam_density
* Parser.{beam,greedy}_parse: ensure labels are added
* Remove 'deprecated' comments
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Parser `StateC` optimizations (#10746)
* `StateC`: Optimizations
Avoid GIL acquisition in `__init__`
Increase default buffer capacities on init
Reduce C++ exception overhead
* Fix typo
* Replace `set::count` with `set::find`
* Add exception attribute to c'tor
* Remove unused import
* Use a power-of-two value for initial capacity
Use default-insert to init `_heads` and `_unshiftable`
* Merge `cdef` variable declarations and assignments
* Vectorize `example.get_aligned_parses` (#10789)
* `example`: Vectorize `get_aligned_parse`
Rename `numpy` import
* Convert aligned array to lists before returning
* Revert import renaming
* Elide slice arguments when selecting the entire range
* Tagger/morphologizer alignment performance optimizations (#10798)
* `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__`
* `AlignmentArray`: Use native list as staging buffer for offset calculation
* `example`: Vectorize `get_aligned`
* Hoist inner functions out of `get_aligned`
* Replace inline `if..else` clause in assignment statement
* `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays
* `example`: Replace array unique value check with `groupby`
* `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized`
Simplify `_get_aligned_non_vectorized`
* `util`: Update `all_equal` docstring
* Explicitly use `int32_t*`
* Restore C CPU inference in the refactored parser (#10747)
* Bring back the C parsing model
The C parsing model is used for CPU inference and is still faster for
CPU inference than the forward pass of the Thinc model.
* Use C sgemm provided by the Ops implementation
* Make tb_framework module Cython, merge in C forward implementation
* TransitionModel: raise in backprop returned from forward_cpu
* Re-enable greedy parse test
* Return transition scores when forward_cpu is used
* Apply suggestions from code review
Import `Model` from `thinc.api`
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Use relative imports in tb_framework
* Don't assume a default for beam_width
* We don't have a direct dependency on BLIS anymore
* Rename forwards to _forward_{fallback,greedy_cpu}
* Require thinc >=8.1.0,<8.2.0
* tb_framework: clean up imports
* Fix return type of _get_seen_mask
* Move up _forward_greedy_cpu
* Style fixes.
* Lower thinc lowerbound to 8.1.0.dev0
* Formatting fix
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Reimplement parser rehearsal function (#10878)
* Reimplement parser rehearsal function
Before the parser refactor, rehearsal was driven by a loop in the
`rehearse` method itself. For each parsing step, the loops would:
1. Get the predictions of the teacher.
2. Get the predictions and backprop function of the student.
3. Compute the loss and backprop into the student.
4. Move the teacher and student forward with the predictions of
the student.
In the refactored parser, we cannot perform search stepwise rehearsal
anymore, since the model now predicts all parsing steps at once.
Therefore, rehearsal is performed in the following steps:
1. Get the predictions of all parsing steps from the student, along
with its backprop function.
2. Get the predictions from the teacher, but use the predictions of
the student to advance the parser while doing so.
3. Compute the loss and backprop into the student.
To support the second step a new method, `advance_with_actions` is
added to `GreedyBatch`, which performs the provided parsing steps.
* tb_framework: wrap upper_W and upper_b in Linear
Thinc's Optimizer cannot handle resizing of existing parameters. Until
it does, we work around this by wrapping the weights/biases of the upper
layer of the parser model in Linear. When the upper layer is resized, we
copy over the existing parameters into a new Linear instance. This does
not trigger an error in Optimizer, because it sees the resized layer as
a new set of parameters.
* Add test for TransitionSystem.apply_actions
* Better FIXME marker
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
* Fixes from Madeesh
* Apply suggestions from Sofie
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove useless assignment
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Rename some identifiers in the parser refactor (#10935)
* Rename _parseC to _parse_batch
* tb_framework: prefix many auxiliary functions with underscore
To clearly state the intent that they are private.
* Rename `lower` to `hidden`, `upper` to `output`
* Parser slow test fixup
We don't have TransitionBasedParser.{v1,v2} until we bring it back as a
legacy option.
* Remove last vestiges of PrecomputableAffine
This does not exist anymore as a separate layer.
* ner: re-enable sentence boundary checks
* Re-enable test that works now.
* test_ner: make loss test more strict again
* Remove commented line
* Re-enable some more beam parser tests
* Remove unused _forward_reference function
* Update for CBlas changes in Thinc 8.1.0.dev2
Bump thinc dependency to 8.1.0.dev3.
* Remove references to spacy.TransitionBasedParser.{v1,v2}
Since they will not be offered starting with spaCy v4.
* `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas`
* dont use get_array_module (#11056) (#11293)
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317)
* `search`: Move from `thinc.extra.search`
Fix NPE in `Beam.__dealloc__`
* `pytest`: Add support for executing Cython tests
Move `search` tests from thinc and patch them to run with `pytest`
* `mypy` fix
* Update comment
* `conftest`: Expose `register_cython_tests`
* Remove unused import
* Move `argmax` impls to new `_parser_utils` Cython module (#11410)
* Parser does not have to be a cdef class anymore
This also fixes validation of the initialization schema.
* Add back spacy.TransitionBasedParser.v2
* Fix a rename that was missed in #10878.
So that rehearsal tests pass.
* Remove module from setup.py that got added during the merge
* Bring back support for `update_with_oracle_cut_size` (#12086)
* Bring back support for `update_with_oracle_cut_size`
This option was available in the pre-refactor parser, but was never
implemented in the refactored parser. This option cuts transition
sequences that are longer than `update_with_oracle_cut` size into
separate sequences that have at most `update_with_oracle_cut`
transitions. The oracle (gold standard) transition sequence is used to
determine the cuts and the initial states for the additional sequences.
Applying this cut makes the batches more homogeneous in the transition
sequence lengths, making forward passes (and as a consequence training)
much faster.
Training time 1000 steps on de_core_news_lg:
- Before this change: 149s
- After this change: 68s
- Pre-refactor parser: 81s
* Fix a rename that was missed in #10878.
So that rehearsal tests pass.
* Apply suggestions from @shadeMe
* Use chained conditional
* Test with update_with_oracle_cut_size={0, 1, 5, 100}
And fix a git that occurs with a cut size of 1.
* Fix up some merge fall out
* Update parser distillation for the refactor
In the old parser, we'd iterate over the transitions in the distill
function and compute the loss/gradients on the go. In the refactored
parser, we first let the student model parse the inputs. Then we'll let
the teacher compute the transition probabilities of the states in the
student's transition sequence. We can then compute the gradients of the
student given the teacher.
* Add back spacy.TransitionBasedParser.v1 references
- Accordion in the architecture docs.
- Test in test_parse, but disabled until we have a spacy-legacy release.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Handle docs with no entities
If a whole batch contains no entities it won't make it to the model, but
it's possible for individual Docs to have no entities. Before this
commit, those Docs would cause an error when attempting to concatenate
arrays because the dimensions didn't match.
It turns out the process of preparing the Ragged at the end of the span
maker forward was a little different from list2ragged, which just uses
the flatten function directly. Letting list2ragged do the conversion
avoids the dimension issue.
This did not come up before because in NEL demo projects it's typical
for data with no entities to be discarded before it reaches the NEL
component.
This includes a simple direct test that shows the issue and checks it's
resolved. It doesn't check if there are any downstream changes, so a
more complete test could be added. A full run was tested by adding an
example with no entities to the Emerson sample project.
* Add a blank instance to default training data in tests
Rather than adding a specific test, since not failing on instances with
no entities is basic functionality, it makes sense to add it to the
default set.
* Fix without modifying architecture
If the architecture is modified this would have to be a new version, but
this change isn't big enough to merit that.
* Fix TODO about typing
Fix was simple: just request an array2f.
* Add type ignore
Maxout has a more restrictive type than the residual layer expects (only
Floats2d vs any Floats).
* Various cleanup
This moves a lot of lines around but doesn't change any functionality.
Details:
1. use `continue` to reduce indentation
2. move sentence doc building inside conditional since it's otherwise
unused
3. reduces some temporary assignments
* Make changes to typing
* Correction
* Format with black
* Corrections based on review
* Bumped Thinc dependency version
* Bumped blis requirement
* Correction for older Python versions
* Update spacy/ml/models/textcat.py
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Corrections based on review feedback
* Readd deleted docstring line
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Tagger: use unnormalized probabilities for inference
Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).
* Add spacy.Tagger.v2 with configurable normalization
Normalization of probabilities is disabled by default to improve
performance.
* Update documentation, models, and tests to spacy.Tagger.v2
* Move Tagger.v1 to spacy-legacy
* docs/architectures: run prettier
* Unnormalized softmax is now a Softmax_v2 option
* Require thinc 8.0.14 and spacy-legacy 3.0.9
* Partial fix of entity linker batching
* Add import
* Better name
* Add `use_gold_ents` option, docs
* Change to v2, create stub v1, update docs etc.
* Fix error type
Honestly no idea what the right type to use here is.
ConfigValidationError seems wrong. Maybe a NotImplementedError?
* Make mypy happy
* Add hacky fix for init issue
* Add legacy pipeline entity linker
* Fix references to class name
* Add __init__.py for legacy
* Attempted fix for loss issue
* Remove placeholder V1
* formatting
* slightly more interesting train data
* Handle batches with no usable examples
This adds a test for batches that have docs but not entities, and a
check in the component that detects such cases and skips the update step
as thought the batch were empty.
* Remove todo about data verification
Check for empty data was moved further up so this should be OK now - the
case in question shouldn't be possible.
* Fix gradient calculation
The model doesn't know which entities are not in the kb, so it generates
embeddings for the context of all of them.
However, the loss does know which entities aren't in the kb, and it
ignores them, as there's no sensible gradient.
This has the issue that the gradient will not be calculated for some of
the input embeddings, which causes a dimension mismatch in backprop.
That should have caused a clear error, but with numpyops it was causing
nans to happen, which is another problem that should be addressed
separately.
This commit changes the loss to give a zero gradient for entities not in
the kb.
* add failing test for v1 EL legacy architecture
* Add nasty but simple working check for legacy arch
* Clarify why init hack works the way it does
* Clarify use_gold_ents use case
* Fix use gold ents related handling
* Add tests for no gold ents and fix other tests
* Use aligned ents function (not working)
This doesn't actually work because the "aligned" ents are gold-only. But
if I have a different function that returns the intersection, *then*
this will work as desired.
* Use proper matching ent check
This changes the process when gold ents are not used so that the
intersection of ents in the pred and gold is used.
* Move get_matching_ents to Example
* Use model attribute to check for legacy arch
* Rename flag
* bump spacy-legacy to lower 3.0.9
Co-authored-by: svlandeg <svlandeg@github.com>
* Auto-format code with black
* add black requirement to dev dependencies and pin to 22.x
* ignore black dependency for comparison with setup.cfg
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* Use Vectors.shape rather than Vectors.data.shape
* Use Vectors.size rather than Vectors.data.size
* Add Vectors.to_ops to move data between different ops
* Add documentation for Vector.to_ops
* Replace use_ops("numpy") by use_ops("cpu") in the parser
This ensures that the best available CPU implementation is chosen
(e.g. Thinc Apple Ops on macOS).
* Run spaCy tests with apple-thinc-ops on macOS
* 🚨 Ignore all existing Mypy errors
* 🏗 Add Mypy check to CI
* Add types-mock and types-requests as dev requirements
* Add additional type ignore directives
* Add types packages to dev-only list in reqs test
* Add types-dataclasses for python 3.6
* Add ignore to pretrain
* 🏷 Improve type annotation on `run_command` helper
The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.
* 🔧 Allow variable type redefinition in limited contexts
These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:
```python
def process(items: List[str]) -> None:
# 'items' has type List[str]
items = [item.split() for item in items]
# 'items' now has type List[List[str]]
...
```
This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`
These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.
* 🏷 Add type annotation to converters mapping
* 🚨 Fix Mypy error in convert CLI argument verification
* 🏷 Improve type annotation on `resolve_dot_names` helper
* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`
* 🏷 Add type annotations for more `Vocab` attributes
* 🏷 Add loose type annotation for gold data compilation
* 🏷 Improve `_format_labels` type annotation
* 🏷 Fix `get_lang_class` type annotation
* 🏷 Loosen return type of `Language.evaluate`
* 🏷 Don't accept `Scorer` in `handle_scores_per_type`
* 🏷 Add `string_to_list` overloads
* 🏷 Fix non-Optional command-line options
* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`
* ➕ Install `typing_extensions` in Python 3.8+
The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.
Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.
These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.
* 🏷 Improve type annotation for `Language.pipe`
These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.
Fixes#8772
* ➖ Don't install `typing-extensions` in Python 3.8+
After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉
These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.
* resolve mypy errors for Strict pydantic types
* refactor code to avoid missing return statement
* fix types of convert CLI command
* avoid list-set confustion in debug_data
* fix typo and formatting
* small fixes to avoid type ignores
* fix types in profile CLI command and make it more efficient
* type fixes in projects CLI
* put one ignore back
* type fixes for render
* fix render types - the sequel
* fix BaseDefault in language definitions
* fix type of noun_chunks iterator - yields tuple instead of span
* fix types in language-specific modules
* 🏷 Expand accepted inputs of `get_string_id`
`get_string_id` accepts either a string (in which case it returns its
ID) or an ID (in which case it immediately returns the ID). These
changes extend the type annotation of `get_string_id` to indicate that
it can accept either strings or IDs.
* 🏷 Handle override types in `combine_score_weights`
The `combine_score_weights` function allows users to pass an `overrides`
mapping to override data extracted from the `weights` argument. Since it
allows `Optional` dictionary values, the return value may also include
`Optional` dictionary values.
These changes update the type annotations for `combine_score_weights` to
reflect this fact.
* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`
* 🏷 Fix redefinition of `wandb_logger`
These changes fix the redefinition of `wandb_logger` by giving a
separate name to each `WandbLogger` version. For
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3`
as `wandb_logger` for now.
* more fixes for typing in language
* type fixes in model definitions
* 🏷 Annotate `_RandomWords.probs` as `NDArray`
* 🏷 Annotate `tok2vec` layers to help Mypy
* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6
Also remove an import that I forgot to move to the top of the module 😅
* more fixes for matchers and other pipeline components
* quick fix for entity linker
* fixing types for spancat, textcat, etc
* bugfix for tok2vec
* type annotations for scorer
* add runtime_checkable for Protocol
* type and import fixes in tests
* mypy fixes for training utilities
* few fixes in util
* fix import
* 🐵 Remove unused `# type: ignore` directives
* 🏷 Annotate `Language._components`
* 🏷 Annotate `spacy.pipeline.Pipe`
* add doc as property to span.pyi
* small fixes and cleanup
* explicit type annotations instead of via comment
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* Draft spancat model
* Add spancat model
* Add test for extract_spans
* Add extract_spans layer
* Upd extract_spans
* Add spancat model
* Add test for spancat model
* Upd spancat model
* Update spancat component
* Upd spancat
* Update spancat model
* Add quick spancat test
* Import SpanCategorizer
* Fix SpanCategorizer component
* Import SpanGroup
* Fix span extraction
* Fix import
* Fix import
* Upd model
* Update spancat models
* Add scoring, update defaults
* Update and add docs
* Fix type
* Update spacy/ml/extract_spans.py
* Auto-format and fix import
* Fix comment
* Fix type
* Fix type
* Update website/docs/api/spancategorizer.md
* Fix comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Better defense
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix labels list
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/ml/extract_spans.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Set annotations during update
* Set annotations in spancat
* fix imports in test
* Update spacy/pipeline/spancat.py
* replace MaxoutLogistic with LinearLogistic
* fix config
* various small fixes
* remove set_annotations parameter in update
* use our beloved tupley format with recent support for doc.spans
* bugfix to allow renaming the default span_key (scores weren't showing up)
* use different key in docs example
* change defaults to better-working parameters from project (WIP)
* register spacy.extract_spans.v1 for legacy purposes
* Upd dev version so can build wheel
* layers instead of architectures for smaller building blocks
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Include additional scores from overrides in combined score weights
* Parameterize spans key in scoring
Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.
* Use the (intentionally very short) default spans key `sc` in the
`SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
the key in the `getter` instead.
Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.
* Update website/docs/api/scorer.md
* Fix scorer for spans key containing underscore
* Increment version
* Add Spans to Evaluate CLI (#8439)
* Add Spans to Evaluate CLI
* Change to spans_key
* Add spans per_type output
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix spancat GPU issues (#8455)
* Fix GPU issues
* Require thinc >=8.0.6
* Switch to glorot_uniform_init
* Fix and test ngram suggester
* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>
* implement textcat resizing for TextCatCNN
* resizing textcat in-place
* simplify code
* ensure predictions for old textcat labels remain the same after resizing (WIP)
* fix for softmax
* store softmax as attr
* fix ensemble weight copy and cleanup
* restructure slightly
* adjust documentation, update tests and quickstart templates to use latest versions
* extend unit test slightly
* revert unnecessary edits
* fix typo
* ensemble architecture won't be resizable for now
* use resizable layer (WIP)
* revert using resizable layer
* resizable container while avoid shape inference trouble
* cleanup
* ensure model continues training after resizing
* use fill_b parameter
* use fill_defaults
* resize_layer callback
* format
* bump thinc to 8.0.4
* bump spacy-legacy to 3.0.6
* Replace negative rows with 0 in StaticVectors
Replace negative row indices with 0-vectors in `StaticVectors`.
* Increase versions related to StaticVectors
* Increase versions of all architctures and layers related to
`StaticVectors`
* Improve efficiency of 0-vector operations
Parallel `spacy-legacy` PR: https://github.com/explosion/spacy-legacy/pull/5
* Update config defaults to new versions
* Update docs
* initialize NLP with train corpus
* add more pretraining tests
* more tests
* function to fetch tok2vec layer for pretraining
* clarify parameter name
* test different objectives
* formatting
* fix check for static vectors when using vectors objective
* clarify docs
* logger statement
* fix init_tok2vec and proc.initialize order
* test training after pretraining
* add init_config tests for pretraining
* pop pretraining block to avoid config validation errors
* custom errors
* fix TorchBiLSTMEncoder documentation
* ensure the types of the encoding Tok2vec layers are correct
* update references from v1 to v2 for the new architectures
* add convenience method to determine tok2vec width in a model
* fix transformer tok2vec dimensions in TextCatEnsemble architecture
* init function should not be nested to avoid pickle issues
* define new architectures for the pretraining objective
* add loss function as attr of the omdel
* cleanup
* cleanup
* shorten name
* fix typo
* remove unused error
* small fix in example imports
* throw error when train_corpus or dev_corpus is not a string
* small fix in custom logger example
* limit macro_auc to labels with 2 annotations
* fix typo
* also create parents of output_dir if need be
* update documentation of textcat scores
* refactor TextCatEnsemble
* fix tests for new AUC definition
* bump to 3.0.0a42
* update docs
* rename to spacy.TextCatEnsemble.v2
* spacy.TextCatEnsemble.v1 in legacy
* cleanup
* small fix
* update to 3.0.0rc2
* fix import that got lost in merge
* cursed IDE
* fix two typos