Commit Graph

641 Commits

Author SHA1 Message Date
Madeesh Kannan
520279ff7c
Tok2Vec: Add distill method (#12108)
* `Tok2Vec`: Add `distill` method

* `Tok2Vec`: Refactor `update`

* Add `Tok2Vec.distill` test

* Update `distill` signature to accept `Example`s instead of separate teacher and student docs

* Add docs

* Remove docstring

* Update test

* Remove `update` calls from test

* Update `Tok2Vec.distill` docstring
2023-03-09 09:37:19 +01:00
Raphael Mitsch
cea58ade89 Simplify interface for int/str representations. 2023-03-07 14:35:38 +01:00
Raphael Mitsch
0c63940407 Merge branch 'v4' into refactor/el-candidates
# Conflicts:
#	spacy/errors.py
2023-03-07 14:00:23 +01:00
Raphael Mitsch
41b3a0d932
Drop support for EntityLinker_v1. (#12377) 2023-03-07 13:10:45 +01:00
Raphael Mitsch
8dbb74c9c0 Merge branch 'v4' into refactor/el-candidates 2023-03-07 09:06:51 +01:00
Raphael Mitsch
d0abc321d8 Format. 2023-03-06 10:27:33 +01:00
Raphael Mitsch
f33f0ed160 Merge branch 'v4' into feature/docwise-generator-batching
# Conflicts:
#	spacy/pipeline/entity_linker.py
#	website/docs/api/entitylinker.mdx
2023-03-06 10:21:12 +01:00
Raphael Mitsch
bb7418ebdd Modify EL batching system. 2023-03-06 10:05:46 +01:00
Raphael Mitsch
38dce966e5 Refacor Candidate attributes and their usage. 2023-03-05 13:49:13 +01:00
Raphael Mitsch
1ea31552be Merge branch 'master' into sync/master-into-v4
# Conflicts:
#	requirements.txt
#	spacy/pipeline/entity_linker.py
#	spacy/util.py
#	website/docs/api/entitylinker.mdx
2023-03-02 16:24:15 +01:00
Raphael Mitsch
6aa6b86d49
Make generation of empty KnowledgeBase instances configurable in EntityLinker (#12320)
* Make empty_kb() configurable.

* Format.

* Update docs.

* Be more specific in KB serialization test.

* Update KB serialization tests. Update docs.

* Remove doc update for batched candidate generation.

* Fix serialization of subclassed KB in tests.

* Format.

* Update docstring.

* Update docstring.

* Switch from pickle to json for custom field serialization.
2023-03-01 16:02:55 +01:00
Sofie Van Landeghem
74cae47bf6
rely on is_empty property instead of __len__ (#12347) 2023-03-01 12:06:07 +01:00
Raphael Mitsch
8596fb8b88 Change type for mentions to look up entity candidates for to SpanGroup from Iterable[Span]. 2023-02-28 15:28:05 +01:00
Raphael Mitsch
a97ef65b33 Fix .entity_ typo in _add_activations() usage. 2023-02-28 14:22:27 +01:00
Daniël de Kok
e27c60a702
Reimplement distillation with oracle cut size (#12214)
* Improve the correctness of _parse_patch

* If there are no more actions, do not attempt to make further
  transitions, even if not all states are final.
* Assert that the number of actions for a step is the same as
  the number of states.

* Reimplement distillation with oracle cut size

The code for distillation with an oracle cut size was not reimplemented
after the parser refactor. We did not notice, because we did not have
tests for this functionality. This change brings back the functionality
and adds this to the parser tests.

* Rename states2actions to _states_to_actions for consistency

* Test distillation max cuts in NER

* Mark parser/NER tests as slow

* Typo

* Fix invariant in _states_diff_to_actions

* Rename _init_batch -> _init_batch_from_teacher

* Ninja edit the ninja edit

* Check that we raise an exception when we pass the incorrect number or actions

* Remove unnecessary get

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Write out condition more explicitly

---------

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
2023-02-21 15:47:18 +01:00
Paul O'Leary McCann
89f974d4f5
Cleanup/remove backwards compat overwrite settings (#11888)
* Remove backwards-compatible overwrite from Entity Linker

This also adds a docstring about overwrite, since it wasn't present.

* Fix docstring

* Remove backward compat settings in Morphologizer

This also needed a docstring added.

For this component it's less clear what the right overwrite settings
are.

* Remove backward compat from sentencizer

This was simple

* Remove backward compat from senter

Another simple one

* Remove backward compat setting from tagger

* Add docstrings

* Update spacy/pipeline/morphologizer.pyx

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update docs

---------

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2023-02-02 14:13:38 +01:00
Paul O'Leary McCann
6920fb7baf
Move Entity Linker v1 to spacy-legacy (#12006)
* Move Entity Linker v1 component to spacy-legacy

This is a follow up to #11889 that moves the component instead of
removing it.

In general, we never import from spacy-legacy in spaCy proper. However,
to use this component, that kind of import will be necessary. I was able
to test this without issues, but is this current import strategy
acceptable? Or should we put the component in a registry?

* Use spacy-legacy pr for CI

This will need to be reverted before merging.

* Add temporary step to log installed spacy-legacy version

* Modify requirements.txt to trigger tests

* Add comment to Python to trigger tests

* TODO REVERT This is a commit with logic changes to trigger tests

* Remove pipe from YAML

Works locally, but possibly this is causing a quoting error or
something.

* Revert "TODO REVERT This is a commit with logic changes to trigger tests"

This reverts commit 689fae71f3.

* Revert "Add comment to Python to trigger tests"

This reverts commit 11840fc598.

* Add more logging

* Try installing directly in workflow

* Try explicitly uninstalling spacy-legacy first

* Cat requirements.txt to confirm contents

In the branch, the thinc version spec is `thinc>=8.1.0,<8.2.0`. But in
the logs, it's clear that a development release of 9.0 is being
installed. It's not clear why that would happen.

* Log requirements at start of build

* TODO REVERT Change thinc spec

Want to see what happens to the installed thinc spec with this change.

* Update thinc requirements

This makes it the same as it was before the merge, >=8.1.0,<8.2.0.

* Use same thinc version as v4 branch

* TODO REVERT Mark dependency check as xfail

spacy-legacy is specified as a git checkout in requirements.txt while
this PR is in progress, which makes the consistency check here fail.

* Remove debugging output / install step

* Revert "Remove debugging output / install step"

This reverts commit 923ea7448b.

* Clean up debugging output

The manual install step with the URL fragment seems to have caused
issues on Windows due to the = in the URL being misinterpreted. On the
other hand, removing it seems to mean the git version of spacy-legacy
isn't actually installed.

This PR removes the URL fragment but keeps the direct command-line
install. Additionally, since it looks like this job is configured to use
the default shell (and not bash), it removes a comment that upsets the
Windows cmd shell.

* Revert "TODO REVERT Mark dependency check as xfail"

This reverts commit d4863ec156.

* Fix requirements.txt, increasing spacy-legacy version

* Raise spacy legacy version in setup.cfg

* Remove azure build workarounds

* make spacy-legacy version explicit in error message

* Remove debugging line

* Suggestions from code review
2023-02-01 09:47:56 +01:00
Daniël de Kok
6b07be2110
Add Language.distill (#12116)
* Add `Language.distill`

This method is the distillation counterpart of `Language.update`.  It
takes a teacher `Language` instance and distills the student pipes on
the teacher pipes.

* Apply suggestions from code review

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Clarify that how Example is used in distillation

* Update transition parser distill docstring for examples argument

* Pass optimizer to `TrainablePipe.distill`

* Annotate pipe before update

As discussed internally, we want to let a pipe annotate before doing an
update with gold/silver data. Otherwise, the output may be (too)
informed by the gold/silver data.

* Rename `component_map` to `student_to_teacher`

* Better synopsis in `Language.distill` docstring

* `name` -> `student_name`

* Fix labels type in docstring

* Mark distill test as slow

* Fix `student_to_teacher` type in docs

---------

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
2023-01-30 12:44:11 +01:00
Adriane Boyd
ec45f704b1
Drop python 3.6/3.7, remove unneeded compat (#12187)
* Drop python 3.6/3.7, remove unneeded compat

* Remove unused import

* Minimal python 3.8+ docs updates
2023-01-27 15:48:20 +01:00
Adriane Boyd
fd911fe2af Format 2023-01-27 08:29:46 +01:00
Adriane Boyd
8548d4d16e Merge remote-tracking branch 'upstream/master' into update-v4-from-master-1 2023-01-27 08:29:09 +01:00
Richard Hudson
f9e020dd67
Fix speed problem with top_k>1 on CPU in edit tree lemmatizer (#12017)
* Refactor _scores2guesses

* Handle arrays on GPU

* Convert argmax result to raw integer

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Use NumpyOps() to copy data to CPU

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Changes based on review comments

* Use different _scores2guesses depending on tree_k

* Add tests for corner cases

* Add empty line for consistency

* Improve naming

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

* Improve naming

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2023-01-20 19:34:11 +01:00
Daniël de Kok
a183db3cef
Merge the parser refactor into v4 (#10940)
* Try to fix doc.copy

* Set dev version

* Make vocab always own lexemes

* Change version

* Add SpanGroups.copy method

* Fix set_annotations during Parser.update

* Fix dict proxy copy

* Upd version

* Fix copying SpanGroups

* Fix set_annotations in parser.update

* Fix parser set_annotations during update

* Revert "Fix parser set_annotations during update"

This reverts commit eb138c89ed.

* Revert "Fix set_annotations in parser.update"

This reverts commit c6df0eafd0.

* Fix set_annotations during parser update

* Inc version

* Handle final states in get_oracle_sequence

* Inc version

* Try to fix parser training

* Inc version

* Fix

* Inc version

* Fix parser oracle

* Inc version

* Inc version

* Fix transition has_gold

* Inc version

* Try to use real histories, not oracle

* Inc version

* Upd parser

* Inc version

* WIP on rewrite parser

* WIP refactor parser

* New progress on parser model refactor

* Prepare to remove parser_model.pyx

* Convert parser from cdef class

* Delete spacy.ml.parser_model

* Delete _precomputable_affine module

* Wire up tb_framework to new parser model

* Wire up parser model

* Uncython ner.pyx and dep_parser.pyx

* Uncython

* Work on parser model

* Support unseen_classes in parser model

* Support unseen classes in parser

* Cleaner handling of unseen classes

* Work through tests

* Keep working through errors

* Keep working through errors

* Work on parser. 15 tests failing

* Xfail beam stuff. 9 failures

* More xfail. 7 failures

* Xfail. 6 failures

* cleanup

* formatting

* fixes

* pass nO through

* Fix empty doc in update

* Hackishly fix resizing. 3 failures

* Fix redundant test. 2 failures

* Add reference version

* black formatting

* Get tests passing with reference implementation

* Fix missing prints

* Add missing file

* Improve indexing on reference implementation

* Get non-reference forward func working

* Start rigging beam back up

* removing redundant tests, cf #8106

* black formatting

* temporarily xfailing issue 4314

* make flake8 happy again

* mypy fixes

* ensure labels are added upon predict

* cleanup remnants from merge conflicts

* Improve unseen label masking

Two changes to speed up masking by ~10%:

- Use a bool array rather than an array of float32.

- Let the mask indicate whether a label was seen, rather than
  unseen. The mask is most frequently used to index scores for
  seen labels. However, since the mask marked unseen labels,
  this required computing an intermittent flipped mask.

* Write moves costs directly into numpy array (#10163)

This avoids elementwise indexing and the allocation of an additional
array.

Gives a ~15% speed improvement when using batch_by_sequence with size
32.

* Temporarily disable ner and rehearse tests

Until rehearse is implemented again in the refactored parser.

* Fix loss serialization issue (#10600)

* Fix loss serialization issue

Serialization of a model fails with:

TypeError: array(738.3855, dtype=float32) is not JSON serializable

Fix this using float conversion.

* Disable CI steps that require spacy.TransitionBasedParser.v2

After finishing the refactor, TransitionBasedParser.v2 should be
provided for backwards compat.

* Add back support for beam parsing to the refactored parser (#10633)

* Add back support for beam parsing

Beam parsing was already implemented as part of the `BeamBatch` class.
This change makes its counterpart `GreedyBatch`. Both classes are hooked
up in `TransitionModel`, selecting `GreedyBatch` when the beam size is
one, or `BeamBatch` otherwise.

* Use kwarg for beam width

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Avoid implicit default for beam_width and beam_density

* Parser.{beam,greedy}_parse: ensure labels are added

* Remove 'deprecated' comments

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Parser `StateC` optimizations (#10746)

* `StateC`: Optimizations

Avoid GIL acquisition in `__init__`
Increase default buffer capacities on init
Reduce C++ exception overhead

* Fix typo

* Replace `set::count` with `set::find`

* Add exception attribute to c'tor

* Remove unused import

* Use a power-of-two value for initial capacity
Use default-insert to init `_heads` and `_unshiftable`

* Merge `cdef` variable declarations and assignments

* Vectorize `example.get_aligned_parses` (#10789)

* `example`: Vectorize `get_aligned_parse`
Rename `numpy` import

* Convert aligned array to lists before returning

* Revert import renaming

* Elide slice arguments when selecting the entire range

* Tagger/morphologizer alignment performance optimizations (#10798)

* `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__`

* `AlignmentArray`: Use native list as staging buffer for offset calculation

* `example`: Vectorize `get_aligned`

* Hoist inner functions out of `get_aligned`

* Replace inline `if..else` clause in assignment statement

* `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays

* `example`: Replace array unique value check with `groupby`

* `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized`
Simplify `_get_aligned_non_vectorized`

* `util`: Update `all_equal` docstring

* Explicitly use `int32_t*`

* Restore C CPU inference in the refactored parser (#10747)

* Bring back the C parsing model

The C parsing model is used for CPU inference and is still faster for
CPU inference than the forward pass of the Thinc model.

* Use C sgemm provided by the Ops implementation

* Make tb_framework module Cython, merge in C forward implementation

* TransitionModel: raise in backprop returned from forward_cpu

* Re-enable greedy parse test

* Return transition scores when forward_cpu is used

* Apply suggestions from code review

Import `Model` from `thinc.api`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Use relative imports in tb_framework

* Don't assume a default for beam_width

* We don't have a direct dependency on BLIS anymore

* Rename forwards to _forward_{fallback,greedy_cpu}

* Require thinc >=8.1.0,<8.2.0

* tb_framework: clean up imports

* Fix return type of _get_seen_mask

* Move up _forward_greedy_cpu

* Style fixes.

* Lower thinc lowerbound to 8.1.0.dev0

* Formatting fix

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Reimplement parser rehearsal function (#10878)

* Reimplement parser rehearsal function

Before the parser refactor, rehearsal was driven by a loop in the
`rehearse` method itself. For each parsing step, the loops would:

1. Get the predictions of the teacher.
2. Get the predictions and backprop function of the student.
3. Compute the loss and backprop into the student.
4. Move the teacher and student forward with the predictions of
   the student.

In the refactored parser, we cannot perform search stepwise rehearsal
anymore, since the model now predicts all parsing steps at once.
Therefore, rehearsal is performed in the following steps:

1. Get the predictions of all parsing steps from the student, along
   with its backprop function.
2. Get the predictions from the teacher, but use the predictions of
   the student to advance the parser while doing so.
3. Compute the loss and backprop into the student.

To support the second step a new method, `advance_with_actions` is
added to `GreedyBatch`, which performs the provided parsing steps.

* tb_framework: wrap upper_W and upper_b in Linear

Thinc's Optimizer cannot handle resizing of existing parameters. Until
it does, we work around this by wrapping the weights/biases of the upper
layer of the parser model in Linear. When the upper layer is resized, we
copy over the existing parameters into a new Linear instance. This does
not trigger an error in Optimizer, because it sees the resized layer as
a new set of parameters.

* Add test for TransitionSystem.apply_actions

* Better FIXME marker

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Fixes from Madeesh

* Apply suggestions from Sofie

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Remove useless assignment

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Rename some identifiers in the parser refactor (#10935)

* Rename _parseC to _parse_batch

* tb_framework: prefix many auxiliary functions with underscore

To clearly state the intent that they are private.

* Rename `lower` to `hidden`, `upper` to `output`

* Parser slow test fixup

We don't have TransitionBasedParser.{v1,v2} until we bring it back as a
legacy option.

* Remove last vestiges of PrecomputableAffine

This does not exist anymore as a separate layer.

* ner: re-enable sentence boundary checks

* Re-enable test that works now.

* test_ner: make loss test more strict again

* Remove commented line

* Re-enable some more beam parser tests

* Remove unused _forward_reference function

* Update for CBlas changes in Thinc 8.1.0.dev2

Bump thinc dependency to 8.1.0.dev3.

* Remove references to spacy.TransitionBasedParser.{v1,v2}

Since they will not be offered starting with spaCy v4.

* `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas`

* dont use get_array_module (#11056) (#11293)

Co-authored-by: kadarakos <kadar.akos@gmail.com>

* Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317)

* `search`: Move from `thinc.extra.search`
Fix NPE in `Beam.__dealloc__`

* `pytest`: Add support for executing Cython tests
Move `search` tests from thinc and patch them to run with `pytest`

* `mypy` fix

* Update comment

* `conftest`: Expose `register_cython_tests`

* Remove unused import

* Move `argmax` impls to new `_parser_utils` Cython module (#11410)

* Parser does not have to be a cdef class anymore

This also fixes validation of the initialization schema.

* Add back spacy.TransitionBasedParser.v2

* Fix a rename that was missed in #10878.

So that rehearsal tests pass.

* Remove module from setup.py that got added during the merge

* Bring back support for `update_with_oracle_cut_size` (#12086)

* Bring back support for `update_with_oracle_cut_size`

This option was available in the pre-refactor parser, but was never
implemented in the refactored parser. This option cuts transition
sequences that are longer than `update_with_oracle_cut` size into
separate sequences that have at most `update_with_oracle_cut`
transitions. The oracle (gold standard) transition sequence is used to
determine the cuts and the initial states for the additional sequences.

Applying this cut makes the batches more homogeneous in the transition
sequence lengths, making forward passes (and as a consequence training)
much faster.

Training time 1000 steps on de_core_news_lg:

- Before this change: 149s
- After this change: 68s
- Pre-refactor parser: 81s

* Fix a rename that was missed in #10878.

So that rehearsal tests pass.

* Apply suggestions from @shadeMe

* Use chained conditional

* Test with update_with_oracle_cut_size={0, 1, 5, 100}

And fix a git that occurs with a cut size of 1.

* Fix up some merge fall out

* Update parser distillation for the refactor

In the old parser, we'd iterate over the transitions in the distill
function and compute the loss/gradients on the go. In the refactored
parser, we first let the student model parse the inputs. Then we'll let
the teacher compute the transition probabilities of the states in the
student's transition sequence. We can then compute the gradients of the
student given the teacher.

* Add back spacy.TransitionBasedParser.v1 references

- Accordion in the architecture docs.
- Test in test_parse, but disabled until we have a spacy-legacy release.

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: kadarakos <kadar.akos@gmail.com>
2023-01-18 11:27:45 +01:00
Daniël de Kok
5e297aa20e
Add TrainablePipe.{distill,get_teacher_student_loss} (#12016)
* Add `TrainablePipe.{distill,get_teacher_student_loss}`

This change adds two methods:

- `TrainablePipe::distill` which performs a training step of a
   student pipe on a teacher pipe, giving a batch of `Doc`s.
- `TrainablePipe::get_teacher_student_loss` computes the loss
  of a student relative to the teacher.

The `distill` or `get_teacher_student_loss` methods are also implemented
in the tagger, edit tree lemmatizer, and parser pipes, to enable
distillation in those pipes and as an example for other pipes.

* Fix stray `Beam` import

* Fix incorrect import

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* TrainablePipe.distill: use `Iterable[Example]`

* Add Pipe.is_distillable method

* Add `validate_distillation_examples`

This first calls `validate_examples` and then checks that the
student/teacher tokens are the same.

* Update distill documentation

* Add distill documentation for all pipes that support distillation

* Fix incorrect identifier

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add comment to explain `is_distillable`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2023-01-16 10:25:53 +01:00
Daniël de Kok
dda7331da3
Handle missing annotations in the edit tree lemmatizer (#12098)
The losses/gradients of missing annotations were not correctly masked
out. Fix this and check the masking in the partial data test.
2023-01-12 12:13:55 +01:00
svlandeg
b2fd9490e3 Merge branch 'copy_master' into copy_v4 2023-01-11 18:40:55 +01:00
Kevin Humphreys
19650ebb52
Enable fuzzy text matching in Matcher (#11359)
* enable fuzzy matching

* add fuzzy param to EntityMatcher

* include rapidfuzz_capi

not yet used

* fix type

* add FUZZY predicate

* add fuzzy attribute list

* fix type properly

* tidying

* remove unnecessary dependency

* handle fuzzy sets

* simplify fuzzy sets

* case fix

* switch to FUZZYn predicates

use Levenshtein distance.
remove fuzzy param.
remove rapidfuzz_capi.

* revert changes added for fuzzy param

* switch to polyleven

(Python package)

* enable fuzzy matching

* add fuzzy param to EntityMatcher

* include rapidfuzz_capi

not yet used

* fix type

* add FUZZY predicate

* add fuzzy attribute list

* fix type properly

* tidying

* remove unnecessary dependency

* handle fuzzy sets

* simplify fuzzy sets

* case fix

* switch to FUZZYn predicates

use Levenshtein distance.
remove fuzzy param.
remove rapidfuzz_capi.

* revert changes added for fuzzy param

* switch to polyleven

(Python package)

* fuzzy match only on oov tokens

* remove polyleven

* exclude whitespace tokens

* don't allow more edits than characters

* fix min distance

* reinstate FUZZY operator

with length-based distance function

* handle sets inside regex operator

* remove is_oov check

* attempt build fix

no mypy failure locally

* re-attempt build fix

* don't overwrite fuzzy param value

* move fuzzy_match

to its own Python module to allow patching

* move fuzzy_match back inside Matcher

simplify logic and add tests

* Format tests

* Parametrize fuzzyn tests

* Parametrize and merge fuzzy+set tests

* Format

* Move fuzzy_match to a standalone method

* Change regex kwarg type to bool

* Add types for fuzzy_match

- Refactor variable names
- Add test for symmetrical behavior

* Parametrize fuzzyn+set tests

* Minor refactoring for fuzz/fuzzy

* Make fuzzy_match a Matcher kwarg

* Update type for _default_fuzzy_match

* don't overwrite function param

* Rename to fuzzy_compare

* Update fuzzy_compare default argument declarations

* allow fuzzy_compare override from EntityRuler

* define new Matcher keyword arg

* fix type definition

* Implement fuzzy_compare config option for EntityRuler and SpanRuler

* Rename _default_fuzzy_compare to fuzzy_compare, remove from reexported objects

* Use simpler fuzzy_compare algorithm

* Update types

* Increase minimum to 2 in fuzzy_compare to allow one transposition

* Fix predicate keys and matching for SetPredicate with FUZZY and REGEX

* Add FUZZY6..9

* Add initial docs

* Increase default fuzzy to rounded 30% of pattern length

* Update docs for fuzzy_compare in components

* Update EntityRuler and SpanRuler API docs

* Rename EntityRuler and SpanRuler setting to matcher_fuzzy_compare

To having naming similar to `phrase_matcher_attr`, rename
`fuzzy_compare` setting for `EntityRuler` and `SpanRuler` to
`matcher_fuzzy_compare. Organize next to `phrase_matcher_attr` in docs.

* Fix schema aliases

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix typo

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add FUZZY6-9 operators and update tests

* Parameterize test over greedy

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix type for fuzzy_compare to remove Optional

* Rename to spacy.levenshtein_compare.v1, move to spacy.matcher.levenshtein

* Update docs following levenshtein_compare renaming

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2023-01-10 10:36:17 +01:00
Sofie Van Landeghem
6d03b04901
Improve score_cats for use with multiple textcat components (#11820)
* add test for running evaluate on an nlp pipeline with two distinct textcat components

* cleanup

* merge dicts instead of overwrite

* don't add more labels to the given set

* Revert "merge dicts instead of overwrite"

This reverts commit 89bee0ed77.

* Switch tests to separate scorer keys rather than merged dicts

* Revert unrelated edits

* Switch textcat scorers to v2

* formatting

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2023-01-09 11:43:48 +01:00
svlandeg
6852adc8b7 Merge branch 'copy_master' into copy_v4 2023-01-03 13:34:05 +01:00
Adriane Boyd
ef9e504eac
Rename modified textcat scorer to v2 (#11971)
As a follow-up to #11696, rename the modified scorer to v2 and move the
v1 scorer to `spacy-legacy`.
2022-12-29 14:01:08 +01:00
kadarakos
933b54ac79
typo fix (#11995) 2022-12-26 13:26:35 +01:00
Daniël de Kok
2f08deea2a Fix fallout from a previous merge 2022-12-22 10:23:31 +01:00
Daniël de Kok
207565a788 Merge remote-tracking branch 'upstream/master' into chore/v4-merge-master-20221222 2022-12-22 10:08:54 +01:00
Daniël de Kok
f9308aae13
Fix v4 branch to build against Thinc v9 (#11921)
* Move `thinc.extra.search` to `spacy.pipeline._parser_internals`

Backport of:
https://github.com/explosion/spaCy/pull/11317

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Replace references to `thinc.backends.linalg` with `CBlas`

Backport of:
https://github.com/explosion/spaCy/pull/11292

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Use cross entropy from `thinc.legacy`

* Require thinc>=9.0.0.dev0,<9.1.0

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
2022-12-17 14:32:19 +01:00
Madeesh Kannan
f5aabaf7d6
Remove unused, experimental multi-task components (#11919)
* Remove experimental multi-task components

These are incomplete implementations and are not usable in their current state.

* Remove orphaned error message

* Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)

* Switch ubuntu-latest to ubuntu-20.04 in main tests

* Only use 20.04 for 3.6

* Revert "Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)"

This reverts commit 77c0fd7b17.

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
2022-12-08 13:24:45 +01:00
Paul O'Leary McCann
6b9af38eeb
Remove all references to "begin_training" (#11943)
When v3 was released, `begin_training` was renamed to `initialize`.
There were warnings in the code and docs about that. This PR removes
them.
2022-12-08 11:43:52 +01:00
Daniël de Kok
27fac7df2e
EditTreeLemmatizer: correctly add strings when initializing from labels (#11934)
Strings in replacement nodes where not added to the `StringStore`
when `EditTreeLemmatizer` was initialized from a set of labels. The
corresponding test did not capture this because it added the strings
through the examples that were passed to the initialization.

This change fixes both this bug in the initialization as the 'shadowing'
of the bug in the test.
2022-12-07 13:53:41 +09:00
svlandeg
04fea09ffd Merge branch 'copy_master' into copy_v4 2022-12-05 08:56:15 +01:00
Adriane Boyd
445c670a2d
Fix spancat for zero suggestions (#11860)
* Add test for spancat predict with zero suggestions

* Fix spancat for zero suggestions

* Undo changes to extract_spans

* Use .sum() as in update
2022-12-02 09:33:52 +01:00
Paul O'Leary McCann
f1e0243450
Remove macro auc per type from textcat defaults (#11887)
This appears to have been added by mistake and never used. Removing it
does not break validation.
2022-11-29 11:50:23 +01:00
Raphael Mitsch
c0fd8a2e71
find-threshold: CLI command for multi-label classifier threshold tuning (#11280)
* Add foundation for find-threshold CLI functionality.

* Finish first draft for find-threshold.

* Add tests.

* Revert adjusted import statements.

* Fix mypy errors.

* Fix imports.

* Harmonize arguments with spacy evaluate command.

* Generalize component and threshold handling. Harmonize arguments with 'spacy evaluate' CLI.

* Fix Spancat test.

* Add beta parameter to Scorer and PRFScore.

* Make beta a component scorer setting.

* Remove beta.

* Update nlp.config (workaround).

* Reload pipeline on threshold change. Adjust tests. Remove confection reference.

* Remove assumption of component being a Pipe object or having a .cfg attribute.

* Adjust test output and reference values.

* Remove beta references. Delete universe.json.

* Reverting unnecessary changes. Removing unused default values. Renaming variables in find-cli tests.

* Update spacy/cli/find_threshold.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Remove adding labels in tests.

* Remove unused error

* Undo changes to PRFScorer

* Change default value for n_trials. Log table iteratively.

* Add warnings for pointless applications of find_threshold().

* Fix imports.

* Adjust type check of TextCategorizer to exclude subclasses.

* Change check of if there's only one unique value in scores.

* Update spacy/cli/find_threshold.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Incorporate feedback.

* Fix test issue. Update docstring.

* Update docs & docstring.

* Update spacy/tests/test_cli.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Add examples to docs. Rename _nlp to nlp in tests.

* Update spacy/cli/find_threshold.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/cli/find_threshold.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-11-25 11:44:55 +01:00
github-actions[bot]
89bfd06fbd
Auto-format code with black (#11826)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2022-11-18 18:24:13 +09:00
Paul O'Leary McCann
75bb7ad541
Check textcat values for validity (#11763)
* Check textcat values for validity

* Fix error numbers

* Clean up vals reference

* Check category value validity through training

The _validate_categories is called in update, which for multilabel is
inherited from the single label component.

* Formatting
2022-11-17 10:25:01 +01:00
github-actions[bot]
bbf64cfc43
Auto-format code with black (#11749)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2022-11-04 11:17:43 +01:00
Adriane Boyd
68b8fa2df2 Merge remote-tracking branch 'upstream/master' into chore/update-v4-from-master-4 2022-11-03 09:42:36 +01:00
Adriane Boyd
420b1d854b
Update textcat scorer threshold behavior (#11696)
* Update textcat scorer threshold behavior

For `textcat` (with exclusive classes) the scorer should always use a
threshold of 0.0 because there should be one predicted label per doc and
the numeric score for that particular label should not matter.

* Rename to test_textcat_multilabel_threshold

* Remove all uses of threshold for multi_label=False

* Update Scorer.score_cats API docs

* Add tests for score_cats with thresholds

* Update textcat API docs

* Fix types

* Convert threshold back to float

* Fix threshold type in docstring

* Improve formatting in Scorer API docs
2022-11-02 15:35:04 +01:00
Adriane Boyd
865691d169
Adjust default attrs for textcat configs (#11698) 2022-10-26 08:43:00 +02:00
Adriane Boyd
cae4589f5a
Replace EntityRuler with SpanRuler implementation (#11320)
* Replace EntityRuler with SpanRuler implementation

Remove `EntityRuler` and rename the `SpanRuler`-based
`future_entity_ruler` to `entity_ruler`.

Main changes:

* It is no longer possible to load patterns on init as with
`EntityRuler(patterns=)`.
* The older serialization formats (`patterns.jsonl`) are no longer
supported and the related tests are removed.
* The config settings are only stored in the config, not in the
serialized component (in particular the `phrase_matcher_attr` and
overwrite settings).

* Add migration guide to EntityRuler API docs

* docs update

* Minor edit

Co-authored-by: svlandeg <svlandeg@github.com>
2022-10-24 09:11:35 +02:00
Adriane Boyd
103b24fb25 Merge remote-tracking branch 'upstream/master' into chore/update-v4-from-master 2022-10-21 09:13:32 +02:00
Adriane Boyd
7e56701057 Merge remote-tracking branch 'upstream/master' into chore/update-develop-from-master-v3.5 2022-10-20 13:38:49 +02:00
Sofie Van Landeghem
2ce6aadda2
update default configs to recent versions (#11618) 2022-10-17 12:10:03 +02:00
github-actions[bot]
ceb62352bf
Auto-format code with black (#11649)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2022-10-14 18:04:55 +09:00
Sofie Van Landeghem
4d869fcc11
Small fixes to docstrings (#11610)
* add missing scorer arg to docstring

* fix class names in textcat_multilabel

* add missing scorer to docstrings
2022-10-12 15:17:40 +02:00
Sofie Van Landeghem
29649589fc
remove dtype (#11615) 2022-10-11 15:25:05 +02:00
Sofie Van Landeghem
ef74f8f5e4
Fix mypy error in edittree lemmatizer (#11612)
* cleanup imports

* try limiting Thinc to previous release

* remove Model specification

* fix code and revert Thinc constraint
2022-10-11 14:15:22 +02:00
svlandeg
e3027c65b8 Merge branch 'copy_develop' into copy_v4 2022-10-03 14:12:16 +02:00
svlandeg
9c8cdb403e Merge branch 'master_copy' into develop_copy 2022-09-30 15:40:26 +02:00
Sofie Van Landeghem
bcda8bc1e7
update mypy to latest version (#11546)
* update mypy and disable it for python 3.6

* ignoring mypy's type redefinition error
2022-09-29 14:24:40 +02:00
Daniël de Kok
efdbb722c5
Store activations in Docs when save_activations is enabled (#11002)
* Store activations in Doc when `store_activations` is enabled

This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.

As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.

* Change type of `store_activations` to `Union[bool, List[str]]`

When the value is:

- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored

* Formatting fixes in Tagger

* Support store_activations in spancat and morphologizer

* Make Doc.activations type visible to MyPy

* textcat/textcat_multilabel: add store_activations option

* trainable_lemmatizer/entity_linker: add store_activations option

* parser/ner: do not currently support returning activations

* Extend tagger and senter tests

So that they, like the other tests, also check that we get no
activations if no activations were requested.

* Document `Doc.activations` and `store_activations` in the relevant pipes

* Start errors/warnings at higher numbers to avoid merge conflicts

Between the master and v4 branches.

* Add `store_activations` to docstrings.

* Replace store_activations setter by set_store_activations method

Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.

* Use dict comprehension suggested by @svlandeg

* Revert "Use dict comprehension suggested by @svlandeg"

This reverts commit 6e7b958f70.

* EntityLinker: add type annotations to _add_activations

* _store_activations: make kwarg-only, remove doc_scores_lens arg

* set_annotations: add type annotations

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* TextCat.predict: return dict

* Make the `TrainablePipe.store_activations` property a bool

This means that we can also bring back `store_activations` setter.

* Remove `TrainablePipe.activations`

We do not need to enumerate the activations anymore since `store_activations` is
`bool`.

* Add type annotations for activations in predict/set_annotations

* Rename `TrainablePipe.store_activations` to `save_activations`

* Error E1400 is not used anymore

This error was used when activations were still `Union[bool, List[str]]`.

* Change wording in API docs after store -> save change

* docs: tag (save_)activations as new in spaCy 4.0

* Fix copied line in morphologizer activations test

* Don't train in any test_save_activations test

* Rename activations

- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
  "guesses" -> "tree_ids".

* Remove unused W400 warning.

This warning was used when we still allowed the user to specify
which activations to save.

* Formatting fixes

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Replace "kb_ids" by a constant

* spancat: replace a cast by an assertion

* Fix EOF spacing

* Fix comments in test_save_activations tests

* Do not set RNG seed in activation saving tests

* Revert "spancat: replace a cast by an assertion"

This reverts commit 0bd5730d16.

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 09:51:12 +02:00
Sofie Van Landeghem
cc10a27c59
Prevent tok2vec to broadcast to listeners when predicting (#11385)
* replicate bug with tok2vec in annotating components

* add overfitting test with a frozen tok2vec

* remove broadcast from predict and check doc.tensor instead

* remove broadcast

* proper error

* slight rephrase of documentation
2022-09-12 15:36:48 +02:00
Madeesh Kannan
0ec9a696e6
Fix config validation failures caused by NVTX pipeline wrappers (#11460)
* Enable Cython<->Python bindings for `Pipe` and `TrainablePipe` methods

* `pipes_with_nvtx_range`: Skip hooking methods whose signature cannot be ascertained

When loading pipelines from a config file, the arguments passed to individual pipeline components is validated by `pydantic` during init. For this, the validation model attempts to parse the function signature of the component's c'tor/entry point so that it can check if all mandatory parameters are present in the config file.

When using the `models_and_pipes_with_nvtx_range` as a `after_pipeline_creation` callback, the methods of all pipeline components get replaced by a NVTX range wrapper **before** the above-mentioned validation takes place. This can be problematic for components that are implemented as Cython extension types - if the extension type is not compiled with Python bindings for its methods, they will have no signatures at runtime. This resulted in `pydantic` matching the *wrapper's* parameters with the those in the config and raising errors.

To avoid this, we now skip applying the wrapper to any (Cython) methods that do not have signatures.
2022-09-12 14:55:41 +02:00
Raphael Mitsch
1f23c615d7
Refactor KB for easier customization (#11268)
* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups.

* Fix tests. Add distinction w.r.t. batch size.

* Remove redundant and add new comments.

* Adjust comments. Fix variable naming in EL prediction.

* Fix mypy errors.

* Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues.

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/kb_base.pyx

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/kb_base.pyx

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Add error messages to NotImplementedErrors. Remove redundant comment.

* Fix imports.

* Remove redundant comments.

* Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase.

* Fix tests.

* Update spacy/errors.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Move KB into subdirectory.

* Adjust imports after KB move to dedicated subdirectory.

* Fix config imports.

* Move Candidate + retrieval functions to separate module. Fix other, small issues.

* Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions.

* Update spacy/kb/kb_in_memory.pyx

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/ml/models/entity_linker.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix typing.

* Change typing of mentions to be Span instead of Union[Span, str].

* Update docs.

* Update EntityLinker and _architecture docs.

* Update website/docs/api/entitylinker.md

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Adjust message for E1046.

* Re-add section for Candidate in kb.md, add reference to dedicated page.

* Update docs and docstrings.

* Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs.

* Update spacy/kb/candidate.pyx

* Update spacy/kb/kb_in_memory.pyx

* Update spacy/pipeline/legacy/entity_linker.py

* Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py.

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-08 10:38:07 +02:00
Adriane Boyd
98a916e01a
Make stable private modules public and adjust names (#11353)
* Make stable private modules public and adjust names

* `spacy.ml._character_embed` -> `spacy.ml.character_embed`
* `spacy.ml._precomputable_affine` -> `spacy.ml.precomputable_affine`
* `spacy.tokens._serialize` -> `spacy.tokens.doc_bin`
* `spacy.tokens._retokenize` -> `spacy.tokens.retokenize`
* `spacy.tokens._dict_proxies` -> `spacy.tokens.span_groups`

* Skip _precomputable_affine

* retokenize -> retokenizer

* Fix imports
2022-08-30 13:56:35 +02:00
Sofie Van Landeghem
5d54c0e32a
Rename modules for consistency (#11286)
* rename Python module to entity_ruler

* rename Python module to attribute_ruler
2022-08-10 11:44:05 +02:00
Daniël de Kok
e581eeac34
precompute_hiddens/Parser: look up CPU ops once (v4) (#11068)
* precompute_hiddens/Parser: look up CPU ops once

* precompute_hiddens: make cpu_ops private
2022-07-29 15:12:19 +02:00
Daniël de Kok
1ff683a50b Merge remote-tracking branch 'upstream/master' into merge-master-v4-20220728 2022-07-28 13:53:59 +02:00
Madeesh Kannan
ba18d2913d
Morphology/Morphologizer optimizations and refactoring (#11024)
* `Morphology`: Refactor to use C types, reduce allocations, remove unused code

* `Morphologzier`: Avoid unnecessary sorting of morpho features

* `Morphologizer`: Remove execessive reallocations of labels, improve hash lookups of labels, coerce `numpy` numeric types to native ints
Update docs

* Remove unused method

* Replace `unique_ptr` usage with `shared_ptr`

* Add type annotations to internal Python methods, rename `hash` variable, fix typos

* Add comment to clarify implementation detail

* Fix return type

* `Morphology`: Stop early when splitting fields and values
2022-07-15 11:14:08 +02:00
Daniël de Kok
a06cbae70d
precompute_hiddens/Parser: do not look up CPU ops (3.4) (#11069)
* precompute_hiddens/Parser: do not look up CPU ops

`get_ops("cpu")` is quite expensive. To avoid this, we want to cache the
result as in #11068. However, for 3.x we do not want to change the ABI.
So we avoid the expensive lookup by using NumpyOps. This should have a
minimal impact, since `get_ops("cpu")` was only used when the model ops
were `CupyOps`. If the ops are `AppleOps`, we are still passing through
the correct BLAS implementation.

* _NUMPY_OPS -> NUMPY_OPS
2022-07-05 10:53:42 +02:00
kadarakos
5240baccfe
dont use get_array_module (#11056) 2022-07-04 17:15:33 +02:00
Raphael Mitsch
e9eb59699f
NEL confidence threshold (#11016)
* Add base for NEL abstention threshold mechanism.

* Add abstention threshold to entity linker. Add test.

* Fix entity linking tests.

* Changed abstention default threshold from 0 to None.

* Fix default values for abstention thresholds.

* Fix mypy errors.

* Replace assertion with raise of proper error code.

* Simplify threshold check. Remove thresholding from EntityLinker_v1.

* Rename test.

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/pipeline/entity_linker.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Make E1043 configurable.

* Update docs.

* Rephrase description in docs. Adjusting error code message.

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-07-04 17:05:21 +02:00
Daniël de Kok
1605ef7319 Merge remote-tracking branch 'upstream/master' into merge-master-v4-20220627-2 2022-06-27 17:45:45 +02:00
Sofie Van Landeghem
eaeca5eb6a
account for NER labels with a hyphen in the name (#10960)
* account for NER labels with a hyphen in the name

* cleanup

* fix docstring

* add return type to helper method

* shorter method and few more occurrences

* user helper method across repo

* fix circular import

* partial revert to avoid circular import
2022-06-17 20:02:37 +01:00
Daniël de Kok
2f05c6824c Merge remote-tracking branch 'upstream/master' into merge-master-v4-20220609 2022-06-09 10:18:25 +02:00
kadarakos
1bb87f35bc
Detect cycle during projectivize (#10877)
* detect cycle during projectivize

* not complete test to detect cycle in projectivize

* boolean to int type to propagate error

* use unordered_set instead of set

* moved error message to errors

* removed cycle from test case

* use find instead of count

* cycle check: only perform one lookup

* Return bool again from _has_head_as_ancestor

Communicate presence of cycles through an output argument.

* Switch to returning std::pair to encode presence of a cycle

The has_cycle pointer is too easy to misuse. Ideally, we would have a
sum type like Rust's `Result` here, but C++ is not there yet.

* _is_non_proj_arc: clarify what we are returning

* _has_head_as_ancestor: remove count

We are now explicitly checking for cycles, so the algorithm must always
terminate. Either we encounter the head, we find a root, or a cycle.

* _is_nonproj_arc: simplify condition

* Another refactor using C++ exceptions

* Remove unused error code

* Print graph with cycle on exception

* Include .hh files in source package

* Add FIXME comment

* cycle detection test

* find cycle when starting from problematic vertex

Co-authored-by: Daniël de Kok <me@danieldk.eu>
2022-06-08 19:34:11 +02:00
Adriane Boyd
a322d6d5f2
Add SpanRuler component (#9880)
* Add SpanRuler component

Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.

* Update spacy/pipeline/span_ruler.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix cast

* Add self.key property

* Use number of patterns as length

* Remove patterns kwarg from init

* Update spacy/tests/pipeline/test_span_ruler.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add options for spans filter and setting to ents

* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.

* Update and generalize tests

* Add test for setting doc.ents, fix key property type

* Fix typing

* Allow independent doc.spans and doc.ents

* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
  * Use `util.filter_spans` by default as `ents_filter`.
  * Use a custom warning if the filter does not work for `doc.ents`.

* Enable use of SpanC.id in Span

* Support id in SpanRuler as Span.id

* Update types

* `id` can only be provided as string (already by `PatternType`
definition)

* Update all uses of Span.id/ent_id in Doc

* Rename Span id kwarg to span_id

* Update types and docs

* Add ents filter to mimic EntityRuler overwrite_ents

* Refactor `ents_filter` to take `entities, spans` args for more
  filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
  (`spacy.first_longest_spans_filter.v1`) to take any number of
  `Iterable[Span]` objects as args so it can be used for spans filter
  or ents filter

* Implement future entity ruler as span ruler

Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
  customized. (Necessary for the same sorting/filtering as in
  `EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
  `preserve_existing_ents_filter` to support
  `EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
  `entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
  properties.

Additional changes:

* Move all config settings to top-level attributes to avoid duplicating
  settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
  casting.)

* Format

* Fix filter make method name

* Refactor to use same error for removing by label or ID

* Also provide existing spans to spans filter

* Support ids property

* Remove token_patterns and phrase_patterns

* Update docstrings

* Add span ruler docs

* Fix types

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Move sorting into filters

* Check for all tokens in seen tokens in entity ruler filters

* Remove registered sort key

* Set Token.ent_id in a backwards-compatible way in Doc.set_ents

* Remove sort options from API docs

* Update docstrings

* Rename entity ruler filters

* Fix and parameterize scoring

* Add id to Span API docs

* Fix typo in API docs

* Include explicit labeled=True for scorer

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-06-02 13:12:53 +02:00
Sofie Van Landeghem
f7507c2327
fix typo + CI slow testing (#10835)
* fix typo

* one more typo
2022-06-02 00:10:16 +02:00
Paul O'Leary McCann
dca2e8c644
Minor NEL type fixes (#10860)
* Fix TODO about typing

Fix was simple: just request an array2f.

* Add type ignore

Maxout has a more restrictive type than the residual layer expects (only
Floats2d vs any Floats).

* Various cleanup

This moves a lot of lines around but doesn't change any functionality.
Details:

1. use `continue` to reduce indentation
2. move sentence doc building inside conditional since it's otherwise
   unused
3. reduces some temporary assignments
2022-06-01 00:41:28 +02:00
Daniël de Kok
85dd2b6c04
Parser: use C saxpy/sgemm provided by the Ops implementation (#10773)
* Parser: use C saxpy/sgemm provided by the Ops implementation

This is a backport of https://github.com/explosion/spaCy/pull/10747
from the parser refactor branch. It eliminates the explicit calls
to BLIS, instead using the saxpy/sgemm provided by the Ops
implementation.

This allows us to use Accelerate in the parser on M1 Macs (with
an updated thinc-apple-ops).

Performance of the de_core_news_lg pipe:

BLIS 0.7.0, no thinc-apple-ops:  6385 WPS
BLIS 0.7.0, thinc-apple-ops:    36455 WPS
BLIS 0.9.0, no thinc-apple-ops: 19188 WPS
BLIS 0.9.0, thinc-apple-ops:    36682 WPS
This PR, thinc-apple-ops:       38726 WPS

Performance of the de_core_news_lg pipe (only tok2vec -> parser):

BLIS 0.7.0, no thinc-apple-ops: 13907 WPS
BLIS 0.7.0, thinc-apple-ops:    73172 WPS
BLIS 0.9.0, no thinc-apple-ops: 41576 WPS
BLIS 0.9.0, thinc-apple-ops:    72569 WPS
This PR, thinc-apple-ops:       87061 WPS

* Require thinc >=8.1.0,<8.2.0

* Lower thinc lowerbound to 8.1.0.dev0

* Use best CPU ops for CBLAS when the parser model is on the GPU

* Fix another unguarded cblas() call

* Fix: use ops as a shorthand for self.model.ops

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
2022-05-27 11:20:52 +02:00
Richard Hudson
32954c3bcb
Fix issues for Mypy 0.950 and Pydantic 1.9.0 (#10786)
* Make changes to typing

* Correction

* Format with black

* Corrections based on review

* Bumped Thinc dependency version

* Bumped blis requirement

* Correction for older Python versions

* Update spacy/ml/models/textcat.py

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>

* Corrections based on review feedback

* Readd deleted docstring line

Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
2022-05-25 09:33:54 +02:00
Paul O'Leary McCann
6be09bbd07
Fix Entity Linker with tokenization mismatches (fix #9575) (#10457)
* Add failing test

* Partial fix for issue

This kind of works. The issue with token length mismatches is gone. The
problem is that when you get empty lists of encodings to compare, it
fails because the sizes are not the same, even though they're both zero:
(0, 3) vs (0,). Not sure why that happens...

* Short circuit on empties

* Remove spurious check

The check here isn't needed now the the short circuit is fixed.

* Update spacy/tests/pipeline/test_entity_linker.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Use "eg", not "example"

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-05-23 20:42:26 +02:00
Daniël de Kok
5586fd9311 Merge remote-tracking branch 'upstream/master' into v4-merge-master-20220518 2022-05-18 11:34:54 +02:00
Raphael Mitsch
f5390e278a
Refactor error messages to remove hardcoded strings (#10729)
* Use custom error msg instead of hardcoded string: replaced remaining hardcoded error message strings.

* Use custom error msg instead of hardcoded string: fixing faulty Errors import.
2022-05-02 13:38:46 +02:00
Daniël de Kok
c90dd6f265
Alignment: use a simplified ragged type for performance (#10319)
* Alignment: use a simplified ragged type for performance

This introduces the AlignmentArray type, which is a simplified version
of Ragged that performs better on the simple(r) indexing performed for
alignment.

* AlignmentArray: raise an error when using unsupported index

* AlignmentArray: move error messages to Errors

* AlignmentArray: remove simlified ... with simplifications

* AlignmentArray: fix typo that broke a[n:n] indexing
2022-04-01 09:02:06 +02:00
Adriane Boyd
85778dfcf4
Add edit tree lemmatizer (#10231)
* Add edit tree lemmatizer

Co-authored-by: Daniël de Kok <me@danieldk.eu>

* Hide edit tree lemmatizer labels

* Use relative imports

* Switch to single quotes in error message

* Type annotation fixes

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Reformat edit_tree_lemmatizer with black

* EditTreeLemmatizer.predict: take Iterable

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Validate edit trees during deserialization

This change also changes the serialized representation. Rather than
mirroring the deep C structure, we use a simple flat union of the match
and substitution node types.

* Move edit_trees to _edit_tree_internals

* Fix invalid edit tree format error message

* edit_tree_lemmatizer: remove outdated TODO comment

* Rename factory name to trainable_lemmatizer

* Ignore type instead of casting truths to List[Union[Ints1d, Floats2d, List[int], List[str]]] for thinc v8.0.14

* Switch to Tagger.v2

* Add documentation for EditTreeLemmatizer

* docs: Fix 3.2 -> 3.3 somewhere

* trainable_lemmatizer documentation fixes

* docs: EditTreeLemmatizer is in edit_tree_lemmatizer.py

Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-03-28 11:13:50 +02:00
Daniël de Kok
e5debc68e4
Tagger: use unnormalized probabilities for inference (#10197)
* Tagger: use unnormalized probabilities for inference

Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).

* Add spacy.Tagger.v2 with configurable normalization

Normalization of probabilities is disabled by default to improve
performance.

* Update documentation, models, and tests to spacy.Tagger.v2

* Move Tagger.v1 to spacy-legacy

* docs/architectures: run prettier

* Unnormalized softmax is now a Softmax_v2 option

* Require thinc 8.0.14 and spacy-legacy 3.0.9
2022-03-15 14:15:31 +01:00
Edward
2eef47dd26
Save span candidates produced by spancat suggesters (#10413)
* Add save_candidates attribute

* Change spancat api

* Add unit test

* reimplement method to produce a list of doc

* Add method to docs

* Add new version tag

* Add intended use to docstring

* prettier formatting
2022-03-14 16:46:58 +01:00
Paul O'Leary McCann
91acc3ea75
Fix entity linker batching (#9669)
* Partial fix of entity linker batching

* Add import

* Better name

* Add `use_gold_ents` option, docs

* Change to v2, create stub v1, update docs etc.

* Fix error type

Honestly no idea what the right type to use here is.
ConfigValidationError seems wrong. Maybe a NotImplementedError?

* Make mypy happy

* Add hacky fix for init issue

* Add legacy pipeline entity linker

* Fix references to class name

* Add __init__.py for legacy

* Attempted fix for loss issue

* Remove placeholder V1

* formatting

* slightly more interesting train data

* Handle batches with no usable examples

This adds a test for batches that have docs but not entities, and a
check in the component that detects such cases and skips the update step
as thought the batch were empty.

* Remove todo about data verification

Check for empty data was moved further up so this should be OK now - the
case in question shouldn't be possible.

* Fix gradient calculation

The model doesn't know which entities are not in the kb, so it generates
embeddings for the context of all of them.

However, the loss does know which entities aren't in the kb, and it
ignores them, as there's no sensible gradient.

This has the issue that the gradient will not be calculated for some of
the input embeddings, which causes a dimension mismatch in backprop.
That should have caused a clear error, but with numpyops it was causing
nans to happen, which is another problem that should be addressed
separately.

This commit changes the loss to give a zero gradient for entities not in
the kb.

* add failing test for v1 EL legacy architecture

* Add nasty but simple working check for legacy arch

* Clarify why init hack works the way it does

* Clarify use_gold_ents use case

* Fix use gold ents related handling

* Add tests for no gold ents and fix other tests

* Use aligned ents function (not working)

This doesn't actually work because the "aligned" ents are gold-only. But
if I have a different function that returns the intersection, *then*
this will work as desired.

* Use proper matching ent check

This changes the process when gold ents are not used so that the
intersection of ents in the pred and gold is used.

* Move get_matching_ents to Example

* Use model attribute to check for legacy arch

* Rename flag

* bump spacy-legacy to lower 3.0.9

Co-authored-by: svlandeg <svlandeg@github.com>
2022-03-04 09:17:36 +01:00
kadarakos
249b97184d
Bugfixes and test for rehearse (#10347)
* fixing argument order for rehearse

* rehearse test for ner and tagger

* rehearse bugfix

* added test for parser

* test for multilabel textcat

* rehearse fix

* remove debug line

* Update spacy/tests/training/test_rehearse.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/tests/training/test_rehearse.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

Co-authored-by: Kádár Ákos <akos@onyx.uvt.nl>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-02-23 16:10:05 +01:00
Daniël de Kok
78a8bec4d0
Make core projectivization functions cdef nogil (#10241)
* Make core projectivization methods cdef nogil

While profiling the parser, I noticed that relatively a lot of time is
spent in projectivization. This change rewrites the functions in the
core loops as cdef nogil for efficiency.

In C++-land, we use vector in place of Python lists and absent heads
are represented as -1 in place of None.

* _heads_to_c: add assertion

Validation should be performed by the caller, but this assertion ensures that
we are not reading/writing out of bounds with incorrect input.
2022-02-21 15:02:21 +01:00
Adriane Boyd
f4c74764b8
Fix Tok2Vec for empty batches (#10324)
* Add test for tok2vec with vectors and empty docs

* Add shortcut for empty batch in Tok2Vec.predict

* Avoid types
2022-02-21 10:22:36 +01:00
github-actions[bot]
6de84c8757
Auto-format code with black (#10333)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
2022-02-21 09:15:42 +01:00
Sofie Van Landeghem
a16b14e591
Merge branch 'master' into copy/develop 2022-02-16 14:04:59 +01:00
github-actions[bot]
91ccacea12
Auto-format code with black (#10209)
* Auto-format code with black

* add black requirement to dev dependencies and pin to 22.x

* ignore black dependency for comparison with setup.cfg

Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2022-02-06 16:30:30 +01:00
Sofie Van Landeghem
14513f82da
Merge pull request #10215 from explosion/master
update develop
2022-02-06 13:45:41 +01:00
Adriane Boyd
0668a449ba
Add Pipe.hide_labels to omit labels from pipeline meta (#10175) 2022-02-05 17:59:24 +01:00
Adriane Boyd
09734c56fc
Use simple suggester for spancat initialization (#10143)
Instead of the running the actual suggester, which may require
annotation from annotating components that is not necessarily present in
the reference docs, use the built-in 1-gram suggester.
2022-01-28 09:34:23 +01:00
Daniël de Kok
63fa55089d Use constant-time head lookups in StateC::{L,R}
This change changes the type of left/right-arc collections from
vector[ArcC] to unordered_map[int, vector[Arc]], so that the arcs are
keyed by the head. This allows us to find all the left/right arcs for a
particular head in constant time in StateC::{L,R}.

Benchmarks with long docs (N is the number of text repetitions):

Before (using #10019):

    N  Time (s)

  400   3.2
  800   5.0
 1600   9.5
 3200  23.2
 6400  66.8
12800  220.0

After (this commit):

   N   Time (s)

  400   3.1
  800   4.3
 1600   6.7
 3200  12.0
 6400  22.0
12800  42.0

Related to #9858 and #10019.
2022-01-13 12:08:46 +01:00
Daniël de Kok
677c1a3507 Speed up the StateC::L feature function (#10019)
* Speed up the StateC::L feature function

This function gets the n-th most-recent left-arc with a particular head.
Before this change, StateC::L would construct a vector of all left-arcs
with the given head and then pick the n-th most recent from that vector.
Since the number of left-arcs strongly correlates with the doc length
and the feature is constructed for every transition, this can make
transition-parsing quadratic.

With this change StateC::L:

- Searches left-arcs backwards.
- Stops early when the n-th matching transition is found.
- Does not construct a vector (reducing memory pressure).

This change doesn't avoid the linear search when the transition that is
queried does not occur in the left-arcs. Regardless, performance is
improved quite a bit with very long docs:

Before:

   N  Time

 400   3.3
 800   5.4
1600  11.6
3200  30.7

After:

   N  Time

 400   3.2
 800   5.0
1600   9.5
3200  23.2

We can probably do better with more tailored data structures, but I
first wanted to make a low-impact PR.

Found while investigating #9858.

* StateC::L: simplify loop
2022-01-13 09:29:58 +01:00
Daniël de Kok
28299644fc
Speed up the StateC::L feature function (#10019)
* Speed up the StateC::L feature function

This function gets the n-th most-recent left-arc with a particular head.
Before this change, StateC::L would construct a vector of all left-arcs
with the given head and then pick the n-th most recent from that vector.
Since the number of left-arcs strongly correlates with the doc length
and the feature is constructed for every transition, this can make
transition-parsing quadratic.

With this change StateC::L:

- Searches left-arcs backwards.
- Stops early when the n-th matching transition is found.
- Does not construct a vector (reducing memory pressure).

This change doesn't avoid the linear search when the transition that is
queried does not occur in the left-arcs. Regardless, performance is
improved quite a bit with very long docs:

Before:

   N  Time

 400   3.3
 800   5.4
1600  11.6
3200  30.7

After:

   N  Time

 400   3.2
 800   5.0
1600   9.5
3200  23.2

We can probably do better with more tailored data structures, but I
first wanted to make a low-impact PR.

Found while investigating #9858.

* StateC::L: simplify loop
2022-01-13 09:03:55 +01:00
jsnfly
176a90edee
Fix texcat loss scaling (#9904) (#10002)
* add failing test for issue 9904

* remove division by batch size and summation before applying the mean

Co-authored-by: jonas <jsnfly@gmx.de>
2022-01-13 09:03:23 +01:00