If the Morphology class tries to lemmatize a word that's not in the
string store, it's forced to just return it as-is. While loading
exceptions, the class could hit a case where these strings weren't in
the string store yet. The resulting lemmas could then be cached, leading
to some words receiving upper-case lemmas. Closes#3551.
* Add early stopping
* Add return_score option to evaluate
* Fix missing str to path conversion
* Fix import + old python compatibility
* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
Co-authored-by: Ines Montani <ines@ines.io>
* added tag_map for indonesian
* changed tag map from .py to .txt to see if tests pass
* added symbols import
* added utf8 encoding flag
* added missing SCONJ symbol
* Auto-format
* Remove unused imports
* Make tag map available in Indonesian defaults
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Fix a bug in the test of JapaneseTokenizer.
This PR may require @polm's review.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
Bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* fix(util): fix decaying function output
* fix(util): better test and adhere to code standards
* fix(util): correct variable name, pytestify test, update website text
* Fix code for bag-of-words feature extraction
The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).
* Support 'bow' architecture for TextCategorizer
This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.
* Fix size limits in train_textcat example
* Explain architectures better in docs