spaCy/examples/training
adrianeboyd 82159b5c19 Updates/bugfixes for NER/IOB converters (#4186)
* Updates/bugfixes for NER/IOB converters

* Converter formats `ner` and `iob` use autodetect to choose a converter if
  possible

* `iob2json` is reverted to handle sentence-per-line data like
  `word1|pos1|ent1 word2|pos2|ent2`

  * Fix bug in `merge_sentences()` so the second sentence in each batch isn't
    skipped

* `conll_ner2json` is made more general so it can handle more formats with
  whitespace-separated columns

  * Supports all formats where the first column is the token and the final
    column is the IOB tag; if present, the second column is the POS tag

  * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
    separates documents

  * Add option for segmenting sentences (new flag `-s`)

  * Parser-based sentence segmentation with a provided model, otherwise with
    sentencizer (new option `-b` to specify model)

  * Can group sentences into documents with `n_sents` as long as sentence
    segmentation is available

  * Only applies automatic segmentation when there are no existing delimiters
    in the data

* Provide info about settings applied during conversion with warnings and
  suggestions if settings conflict or might not be not optimal.

* Add tests for common formats

* Add '(default)' back to docs for -c auto

* Add document count back to output

* Revert changes to converter output message

* Use explicit tabs in convert CLI test data

* Adjust/add messages for n_sents=1 default

* Add sample NER data to training examples

* Update README

* Add links in docs to example NER data

* Define msg within converters
2019-08-29 12:04:01 +02:00
..
ner_example_data Updates/bugfixes for NER/IOB converters (#4186) 2019-08-29 12:04:01 +02:00
conllu.py Remove unused cytoolz / itertools imports 2018-12-03 02:12:07 +01:00
ner_multitask_objective.py Auto-format examples 2018-12-02 04:26:26 +01:00
pretrain_kb.py Improve token pattern checking without validation (#4105) 2019-08-21 14:00:37 +02:00
pretrain_textcat.py Auto-format examples 2018-12-02 04:26:26 +01:00
rehearsal.py Update rehearsal example 2019-02-24 16:17:41 +01:00
train_entity_linker.py Improve token pattern checking without validation (#4105) 2019-08-21 14:00:37 +02:00
train_intent_parser.py Auto-format examples 2018-12-02 04:26:26 +01:00
train_ner.py Test and update examples [ci skip] 2019-03-16 14:15:49 +01:00
train_new_entity_type.py Update compatibility [ci skip] 2019-04-01 16:25:16 +02:00
train_parser.py Test and update examples [ci skip] 2019-03-16 14:15:49 +01:00
train_tagger.py Test and update examples [ci skip] 2019-03-16 14:15:49 +01:00
train_textcat.py Bug fixes and options for TextCategorizer (#3472) 2019-03-23 16:44:44 +01:00
training-data.json Update Example input JSON file to adhere to specification. (#3243) 2019-02-07 16:18:01 +01:00
vocab-data.jsonl Use even smaller examle size 2017-10-30 19:46:45 +01:00