2017-05-06 21:38:12 +03:00
|
|
|
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
2017-05-06 17:47:15 +03:00
|
|
|
from thinc.neural import Model, Maxout, Softmax, Affine
|
2017-05-04 14:31:40 +03:00
|
|
|
from thinc.neural._classes.hash_embed import HashEmbed
|
2017-05-05 21:12:03 +03:00
|
|
|
|
|
|
|
from thinc.neural._classes.convolution import ExtractWindow
|
|
|
|
from thinc.neural._classes.static_vectors import StaticVectors
|
2017-05-06 19:24:38 +03:00
|
|
|
from thinc.neural._classes.batchnorm import BatchNorm
|
2017-05-05 21:12:03 +03:00
|
|
|
|
2017-05-06 18:37:36 +03:00
|
|
|
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
2017-05-04 14:31:40 +03:00
|
|
|
|
|
|
|
|
|
|
|
def get_col(idx):
|
|
|
|
def forward(X, drop=0.):
|
2017-05-06 21:38:12 +03:00
|
|
|
assert len(X.shape) <= 3
|
2017-05-06 15:22:20 +03:00
|
|
|
output = Model.ops.xp.ascontiguousarray(X[:, idx])
|
2017-05-06 21:38:12 +03:00
|
|
|
def backward(y, sgd=None):
|
|
|
|
dX = Model.ops.allocate(X.shape)
|
|
|
|
dX[:, idx] += y
|
|
|
|
return dX
|
|
|
|
return output, backward
|
2017-05-04 14:31:40 +03:00
|
|
|
return layerize(forward)
|
|
|
|
|
|
|
|
|
2017-05-07 03:02:43 +03:00
|
|
|
def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
|
|
|
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG]
|
|
|
|
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
|
|
|
|
#static = get_col(cols.index(ID)) >> StaticVectors(lang, width)
|
|
|
|
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
|
|
|
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width//4, embed_size)
|
|
|
|
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width//4, embed_size)
|
|
|
|
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width//4, embed_size)
|
|
|
|
tag = get_col(cols.index(TAG)) >> HashEmbed(width//2, embed_size)
|
|
|
|
tok2vec = (
|
|
|
|
doc2feats(cols)
|
|
|
|
>> with_flatten(
|
|
|
|
#(static | prefix | suffix | shape)
|
|
|
|
(lower | prefix | suffix | shape | tag)
|
|
|
|
>> Maxout(width)
|
|
|
|
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
|
|
|
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
|
|
|
)
|
2017-05-06 17:47:15 +03:00
|
|
|
)
|
2017-05-07 03:02:43 +03:00
|
|
|
return tok2vec
|
2017-05-06 17:47:15 +03:00
|
|
|
|
|
|
|
|
2017-05-07 03:02:43 +03:00
|
|
|
def doc2feats(cols):
|
|
|
|
def forward(docs, drop=0.):
|
|
|
|
feats = [doc.to_array(cols) for doc in docs]
|
|
|
|
feats = [model.ops.asarray(f, dtype='uint64') for f in feats]
|
|
|
|
return feats, None
|
2017-05-06 17:47:15 +03:00
|
|
|
model = layerize(forward)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
2017-05-07 03:02:43 +03:00
|
|
|
def build_feature_precomputer(model, feat_maps):
|
|
|
|
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
2017-05-06 21:38:12 +03:00
|
|
|
|
2017-05-07 03:02:43 +03:00
|
|
|
This is used for the parser, where we want to take a batch of documents,
|
|
|
|
and compute vectors for each (token, position) pair. These vectors can then
|
|
|
|
be reused, especially for beam-search.
|
|
|
|
|
|
|
|
Let's say we're using 12 features for each state, e.g. word at start of
|
|
|
|
buffer, three words on stack, their children, etc. In the normal arc-eager
|
|
|
|
system, a document of length N is processed in 2*N states. This means we'll
|
|
|
|
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
|
|
|
N*12 vector computations. The saving for beam-search is much better:
|
|
|
|
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
|
|
|
so we can save the factor k. This also gives a nice CPU/GPU division:
|
|
|
|
we can do all our hard maths up front, packed into large multiplications,
|
|
|
|
and do the hard-to-program parsing on the CPU.
|
|
|
|
'''
|
|
|
|
def precompute(input_vectors):
|
|
|
|
cached, backprops = zip(*[lyr.begin_update(input_vectors)
|
|
|
|
for lyr in feat_maps)
|
|
|
|
def forward(batch_token_ids, drop=0.):
|
|
|
|
output = ops.allocate((batch_size, output_width))
|
|
|
|
# i: batch index
|
|
|
|
# j: position index (i.e. N0, S0, etc
|
|
|
|
# tok_i: Index of the token within its document
|
|
|
|
for i, token_ids in enumerate(batch_token_ids):
|
|
|
|
for j, tok_i in enumerate(token_ids):
|
|
|
|
output[i] += cached[j][tok_i]
|
|
|
|
def backward(d_vector, sgd=None):
|
|
|
|
d_inputs = ops.allocate((batch_size, n_feat, vec_width))
|
|
|
|
for i, token_ids in enumerate(batch_token_ids):
|
|
|
|
for j in range(len(token_ids)):
|
|
|
|
d_inputs[i][j] = backprops[j](d_vector, sgd)
|
|
|
|
# Return the IDs, so caller can associate to correct token
|
|
|
|
return (batch_token_ids, d_inputs)
|
|
|
|
return vector, backward
|
|
|
|
return chain(layerize(forward), model)
|
|
|
|
return precompute
|
2017-05-06 21:38:12 +03:00
|
|
|
|
|
|
|
|
|
|
|
def print_shape(prefix):
|
|
|
|
def forward(X, drop=0.):
|
|
|
|
return X, lambda dX, **kwargs: dX
|
|
|
|
return layerize(forward)
|
2017-05-07 03:02:43 +03:00
|
|
|
|
2017-05-06 21:38:12 +03:00
|
|
|
|
|
|
|
@layerize
|
|
|
|
def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|
|
|
ops = Model.ops
|
|
|
|
tokens, attrs, vectors = tokens_attrs_vectors
|
|
|
|
def backward(d_output, sgd=None):
|
|
|
|
return (tokens, d_output)
|
|
|
|
return vectors, backward
|
|
|
|
|
|
|
|
|
2017-05-06 15:22:20 +03:00
|
|
|
@layerize
|
|
|
|
def flatten(seqs, drop=0.):
|
|
|
|
ops = Model.ops
|
|
|
|
def finish_update(d_X, sgd=None):
|
|
|
|
return d_X
|
|
|
|
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs])
|
|
|
|
return X, finish_update
|