* Prevent subtok label if not learning tokens
The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.
* Make merge_subtokens a parser post-process if learn_subtokens
* Fix train script
* Add test for 3830: subtok problem
* Fix handlign of non-subtok in parser training
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* turn kb_creator into CLI script (wip)
* proper parameters for training entity vectors
* wikidata pipeline split up into two executable scripts
* remove context_width
* move wikidata scripts in bin directory, remove old dummy script
* refine KB script with logs and preprocessing options
* small edits
* small improvements to logging of EL CLI script
* Improve error message when model.from_bytes() dies
When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,
e.g. "AttributeError: FunctionLayer has no attribute G"
This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.
I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.
* Update spacy/pipeline/pipes.pyx
* Update spacy/pipeline/pipes.pyx
* Update spacy/pipeline/pipes.pyx
* Update spacy/syntax/nn_parser.pyx
* Update spacy/syntax/nn_parser.pyx
* Update spacy/pipeline/pipes.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Update spacy/pipeline/pipes.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>