Similar to how vectors are handled, move the vocab lookups to be loaded
at the start of training rather than when the vocab is initialized,
since the vocab doesn't have access to the full config when it's
created.
The option moves from `nlp.load_vocab_data` to `training.lookups`.
Typically these tables will come from `spacy-lookups-data`, but any
`Lookups` object can be provided.
The loading from `spacy-lookups-data` is now strict, so configs for each
language should specify the exact tables required. This also makes it
easier to control whether the larger clusters and probs tables are
included.
To load `lexeme_norm` from `spacy-lookups-data`:
```
[training.lookups]
@misc = "spacy.LoadLookupsData.v1"
lang = ${nlp.lang}
tables = ["lexeme_norm"]
```
* Fix up/download of http and local paths
* Support git_sparse_checkout for assets
* Fix scorer
* Handle already-present directories for git assets
* Improve convert command
* Fix support for existant files in git assets
* Support branches in git sparse checkout
* Format
* Fix git assets
* Document git block in assets
* Fix test
* Fix test
* Revert "Fix test"
This reverts commit cf3097260f.
* Revert "Fix test"
This reverts commit 964d636e27.
* Dont multiply p/r/f by 100
* Display scores * 100 during training
* Allow adding pipeline components from source model
* Config: name -> component
* Improve error messages
* Fix error and test
* Add frozen components and exclude logic
* Remove exclude from Language.evaluate
* Init sourced components with current vocab
* Fix error codes
Move timing into `Language.evaluate` so that only the processing is
timing, not processing + scoring. `Language.evaluate` returns
`scores["speed"]` as words per second, which should be identical to how
the speed was added to the scores previously. Also add the speed to the
evaluate CLI output.
Add and update `score` methods, provided `scores`, and default weights
`default_score_weights` for pipeline components.
* `scores` provides all top-level keys returned by `score` (merely informative, similar to `assigns`).
* `default_score_weights` provides the default weights for a default config.
* The keys from `default_score_weights` determine which values will be
shown in the `spacy train` output, so keys with weight `0.0` will be
displayed but not counted toward the overall score.
* Refactor the Scorer to improve flexibility
Refactor the `Scorer` to improve flexibility for arbitrary pipeline
components.
* Individual pipeline components provide their own `evaluate` methods
that score a list of `Example`s and return a dictionary of scores
* `Scorer` is initialized either:
* with a provided pipeline containing components to be scored
* with a default pipeline containing the built-in statistical
components (senter, tagger, morphologizer, parser, ner)
* `Scorer.score` evaluates a list of `Example`s and returns a dictionary
of scores referring to the scores provided by the components in the
pipeline
Significant differences:
* `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc`
and the new `morph_acc`, `pos_acc`, and `lemma_acc`
* Scoring is no longer cumulative: `Scorer.score` scores a list of
examples rather than a single example and does not retain any state
about previously scored examples
* PRF values in the returned scores are no longer multiplied by 100
* Add kwargs to Morphologizer.evaluate
* Create generalized scoring methods in Scorer
* Generalized static scoring methods are added to `Scorer`
* Methods require an attribute (either on Token or Doc) that is
used to key the returned scores
Naming differences:
* `uas`, `las`, and `las_per_type` in the scores dict are renamed to
`dep_uas`, `dep_las`, and `dep_las_per_type`
Scoring differences:
* `Doc.sents` is now scored as spans rather than on sentence-initial
token positions so that `Doc.sents` and `Doc.ents` can be scored with
the same method (this lowers scores since a single incorrect sentence
start results in two incorrect spans)
* Simplify / extend hasattr check for eval method
* Add hasattr check to tokenizer scoring
* Simplify to hasattr check for component scoring
* Reset Example alignment if docs are set
Reset the Example alignment if either doc is set in case the
tokenization has changed.
* Add PRF tokenization scoring for tokens as spans
Add PRF scores for tokens as character spans. The scores are:
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for (token.idx, token.idx + len(token))
* Add docstring to Scorer.score_tokenization
* Rename component.evaluate() to component.score()
* Update Scorer API docs
* Update scoring for positive_label in textcat
* Fix TextCategorizer.score kwargs
* Update Language.evaluate docs
* Update score names in default config