Commit Graph

317 Commits

Author SHA1 Message Date
adrianeboyd
d2f3a44b42 Improve train CLI sentrec scoring (#4892)
* reorder to metrics to prioritize F over P/R
* add sentrec to model metrics
2020-01-08 16:52:14 +01:00
Ines Montani
83e0a6f3e3
Modernize plac commands for Python 3 (#4836) 2020-01-01 13:15:46 +01:00
Ines Montani
a892821c51 More formatting changes 2019-12-25 17:59:52 +01:00
Ines Montani
db55577c45
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
Ines Montani
158b98a3ef Merge branch 'master' into develop 2019-12-21 18:55:03 +01:00
Sofie Van Landeghem
12158c1e3a Restore tqdm imports (#4804)
* set 4.38.0 to minimal version with color bug fix

* set imports back to proper place

* add upper range for tqdm
2019-12-16 13:12:19 +01:00
adrianeboyd
a4cacd3402 Add tag_map argument to CLI debug-data and train (#4750)
Add an argument for a path to a JSON-formatted tag map, which is used to
update and extend the default language tag map.
2019-12-13 10:46:18 +01:00
adrianeboyd
b841d3fe75 Add a tagger-based SentenceRecognizer (#4713)
* Add sent_starts to GoldParse

* Add SentTagger pipeline component

Add `SentTagger` pipeline component as a subclass of `Tagger`.

* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
  * S (1): token at beginning of sentence
  * I (0): all other sentence positions
* Sets `token.sent_start` values

* Add sentence segmentation to Scorer

Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.

* Add sentence segmentation to CLI evaluate

* Add senttagger metrics/scoring to train CLI

* Rename SentTagger to SentenceRecognizer

* Add SentenceRecognizer to spacy.pipes imports

* Add SentenceRecognizer serialization test

* Shorten component name to sentrec

* Remove duplicates from train CLI output metrics
2019-11-28 11:10:07 +01:00
adrianeboyd
44829950ba Fix Example details for train CLI / pipeline components (#4624)
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Update test for ignore_misaligned
2019-11-23 14:32:15 +01:00
adrianeboyd
faaa832518 Generalize handling of tokenizer special cases (#4259)
* Generalize handling of tokenizer special cases

Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.

Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:

* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes

Existing tests/settings that couldn't be preserved as before:

* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again

When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.

* Remove accidentally added test case

* Really remove accidentally added test

* Reload special cases when necessary

Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.

* Update error code number

* Fix offset and whitespace in Matcher special cases

* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case

* Improve cache flushing in tokenizer

* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21

* Remove reinitialized PreshMaps on cache flush

* Update UD bin scripts

* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)

* Use special Matcher only for cases with affixes

* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
  * Additionally include specials cache checks while splitting on infixes
  * Since the special Matcher needs consistent affix-only tokenization
    for the special cases themselves, introduce the argument
    `with_special_cases` in order to do tokenization with or without
    specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes

* Replace PhraseMatcher with Aho-Corasick

Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.

The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.

Fixes #4308.

* Restore support for pickling

* Fix internal keyword add/remove for numpy arrays

* Add test for #4248, clean up test

* Improve efficiency of special cases handling

* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
  * Process merge/splits in one pass without repeated token shifting
  * Merge in place if no splits

* Update error message number

* Remove UD script modifications

Only used for timing/testing, should be a separate PR

* Remove final traces of UD script modifications

* Update UD bin scripts

* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)

* Add missing loop for match ID set in search loop

* Remove cruft in matching loop for partial matches

There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.

* Replace dict trie with MapStruct trie

* Fix how match ID hash is stored/added

* Update fix for match ID vocab

* Switch from map_get_unless_missing to map_get

* Switch from numpy array to Token.get_struct_attr

Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.

Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)

* Restructure imports to export find_matches

* Implement full remove()

Remove unnecessary trie paths and free unused maps.

Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.

* Switch to PhraseMatcher.find_matches

* Switch to local cdef functions for span filtering

* Switch special case reload threshold to variable

Refer to variable instead of hard-coded threshold

* Move more of special case retokenize to cdef nogil

Move as much of the special case retokenization to nogil as possible.

* Rewrap sort as stdsort for OS X

* Rewrap stdsort with specific types

* Switch to qsort

* Fix merge

* Improve cmp functions

* Fix realloc

* Fix realloc again

* Initialize span struct while retokenizing

* Temporarily skip retokenizing

* Revert "Move more of special case retokenize to cdef nogil"

This reverts commit 0b7e52c797.

* Revert "Switch to qsort"

This reverts commit a98d71a942.

* Fix specials check while caching

* Modify URL test with emoticons

The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.

* Refactor _apply_special_cases()

* Use cdef ints for span info used in multiple spots

* Modify _filter_special_spans() to prefer earlier

Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.

* Replace MatchStruct with Entity

Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.

* Replace Entity with more general SpanC

* Replace MatchStruct with SpanC

* Add error in debug-data if no dev docs are available (see #4575)

* Update azure-pipelines.yml

* Revert "Update azure-pipelines.yml"

This reverts commit ed1060cf59.

* Use latest wasabi

* Reorganise install_requires

* add dframcy to universe.json (#4580)

* Update universe.json [ci skip]

* Fix multiprocessing for as_tuples=True (#4582)

* Fix conllu script (#4579)

* force extensions to avoid clash between example scripts

* fix arg order and default file encoding

* add example config for conllu script

* newline

* move extension definitions to main function

* few more encodings fixes

* Add load_from_docbin example [ci skip]

TODO: upload the file somewhere

* Update README.md

* Add warnings about 3.8 (resolves #4593) [ci skip]

* Fixed typo: Added space between "recognize" and "various" (#4600)

* Fix DocBin.merge() example (#4599)

* Replace function registries with catalogue (#4584)

* Replace functions registries with catalogue

* Update __init__.py

* Fix test

* Revert unrelated flag [ci skip]

* Bugfix/dep matcher issue 4590 (#4601)

* add contributor agreement for prilopes

* add test for issue #4590

* fix on_match params for DependencyMacther (#4590)

* Minor updates to language example sentences (#4608)

* Add punctuation to Spanish example sentences

* Combine multilanguage examples for lang xx

* Add punctuation to nb examples

* Always realloc to a larger size

Avoid potential (unlikely) edge case and cymem error seen in #4604.

* Add error in debug-data if no dev docs are available (see #4575)

* Update debug-data for GoldCorpus / Example

* Ignore None label in misaligned NER data
2019-11-13 21:24:35 +01:00
Sofie Van Landeghem
e48a09df4e Example class for training data (#4543)
* OrigAnnot class instead of gold.orig_annot list of zipped tuples

* from_orig to replace from_annot_tuples

* rename to RawAnnot

* some unit tests for GoldParse creation and internal format

* removing orig_annot and switching to lists instead of tuple

* rewriting tuples to use RawAnnot (+ debug statements, WIP)

* fix pop() changing the data

* small fixes

* pop-append fixes

* return RawAnnot for existing GoldParse to have uniform interface

* clean up imports

* fix merge_sents

* add unit test for 4402 with new structure (not working yet)

* introduce DocAnnot

* typo fixes

* add unit test for merge_sents

* rename from_orig to from_raw

* fixing unit tests

* fix nn parser

* read_annots to produce text, doc_annot pairs

* _make_golds fix

* rename golds_to_gold_annots

* small fixes

* fix encoding

* have golds_to_gold_annots use DocAnnot

* missed a spot

* merge_sents as function in DocAnnot

* allow specifying only part of the token-level annotations

* refactor with Example class + underlying dicts

* pipeline components to work with Example objects (wip)

* input checking

* fix yielding

* fix calls to update

* small fixes

* fix scorer unit test with new format

* fix kwargs order

* fixes for ud and conllu scripts

* fix reading data for conllu script

* add in proper errors (not fixed numbering yet to avoid merge conflicts)

* fixing few more small bugs

* fix EL script
2019-11-11 17:35:27 +01:00
Ines Montani
cf4ec88b38 Use latest wasabi 2019-11-04 02:38:45 +01:00
Ines Montani
c5e41247e8 Tidy up and auto-format 2019-10-28 12:43:55 +01:00
Matthew Honnibal
f0ec7bcb79
Flag to ignore examples with mismatched raw/gold text (#4534)
* Flag to ignore examples with mismatched raw/gold text

After #4525, we're seeing some alignment failures on our OntoNotes data. I think we actually have fixes for most of these cases.

In general it's better to fix the data, but it seems good to allow the GoldCorpus class to just skip cases where the raw text doesn't
match up to the gold words. I think previously we were silently ignoring these cases.

* Try to fix test on Python 2.7
2019-10-28 11:40:12 +01:00
Ines Montani
d2da117114 Also support passing list to Language.disable_pipes (#4521)
* Also support passing list to Language.disable_pipes

* Adjust internals
2019-10-25 16:19:08 +02:00
Ines Montani
b6670bf0c2 Use consistent spelling 2019-10-02 10:37:39 +02:00
Ines Montani
f8d1e2f214 Update CLI docs [ci skip] 2019-09-28 13:12:30 +02:00
Matthew Honnibal
e34b4a38b0 Fix set labels meta 2019-09-19 00:56:07 +02:00
Ines Montani
00a8cbc306 Tidy up and auto-format 2019-09-18 20:27:03 +02:00
adrianeboyd
b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani
af25323653 Tidy up and auto-format 2019-09-11 14:00:36 +02:00
Matthew Honnibal
7b858ba606 Update from master 2019-09-10 20:14:08 +02:00
Sofie Van Landeghem
482c7cd1b9 pulling tqdm imports in functions to avoid bug (tmp fix) (#4263) 2019-09-09 16:32:11 +02:00
Adriane Boyd
f3906950d3 Add separate noise vs orth level to train CLI 2019-08-29 09:10:35 +02:00
Matthew Honnibal
bc5ce49859 Fix 'noise_level' in train cmd 2019-08-28 17:55:38 +02:00
Matthew Honnibal
bb911e5f4e Fix #3830: 'subtok' label being added even if learn_tokens=False (#4188)
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Ines Montani
6b3a79ac96 Call rmtree and copytree with strings (closes #3713) 2019-05-11 15:48:35 +02:00
Ines Montani
e0f487f904 Rename early_stopping_iter to n_early_stopping 2019-04-22 14:31:25 +02:00
Ines Montani
9767427669 Auto-format 2019-04-22 14:31:11 +02:00
Krzysztof Kowalczyk
cc1516ec26 Improved training and evaluation (#3538)
* Add early stopping

* Add return_score option to evaluate

* Fix missing str to path conversion

* Fix import + old python compatibility

* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
2019-04-15 12:04:36 +02:00
Ines Montani
0f8739c7cb Update train.py 2019-03-16 16:04:15 +01:00
Ines Montani
e7aa25d9b1 Fix beam width integration 2019-03-16 16:02:47 +01:00
Ines Montani
c94742ff64 Only add beam width if customised 2019-03-16 15:55:31 +01:00
Ines Montani
7a354761c7 Auto-format 2019-03-16 15:55:13 +01:00
Matthew Honnibal
daa8c3787a Add eval_beam_widths argument to spacy train 2019-03-16 15:02:39 +01:00
Matthew Honnibal
f762c36e61 Evaluate accuracy at multiple beam widths 2019-03-15 15:19:49 +01:00
Jari Bakken
0546135fba Set vectors.name when updating meta.json during training (#3100)
* Set vectors.name when updating meta.json during training

* add vectors name to meta in `spacy package`
2018-12-27 19:55:40 +01:00
Matthew Honnibal
1788bf1af7 Unbreak progress bar 2018-12-20 13:57:00 +01:00
Matthew Honnibal
92f4b9c8ea set max batch size to 1000 2018-12-17 23:15:39 +00:00
Matthew Honnibal
fb56028476 Remove b1 and b2 decay 2018-12-12 12:37:07 +01:00
Matthew Honnibal
83ac227bd3
💫 Better support for semi-supervised learning (#3035)
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
Support semi-supervised learning in spacy train

One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing.

    Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning.

    Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective.

    Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage:

python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze

Implement rehearsal methods for pipeline components

The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows:

    Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model.

    Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details.

    Implement rehearsal updates for tagger

    Implement rehearsal updates for text categoriz
2018-12-10 16:25:33 +01:00
Matthew Honnibal
b1c8731b4d Make spacy train respect LOG_FRIENDLY 2018-12-10 09:46:53 +01:00
Matthew Honnibal
0994dc50d8 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2018-12-10 05:35:01 +00:00
Matthew Honnibal
24f2e9bc07 Tweak training params 2018-12-09 17:08:58 +00:00
Matthew Honnibal
1b1a1af193 Fix printing in spacy train 2018-12-09 06:03:49 +01:00
Matthew Honnibal
cb16b78b0d Set dropout rate to 0.2 2018-12-08 19:59:11 +01:00
Ines Montani
ffdd5e964f
Small CLI improvements (#3030)
* Add todo

* Auto-format

* Update wasabi pin

* Format training results with wasabi

* Remove loading animation from model saving

Currently behaves weirdly

* Inline messages

* Remove unnecessary path2str

Already taken care of by printer

* Inline messages in CLI

* Remove unused function

* Move loading indicator into loading function

* Check for invalid whitespace entities
2018-12-08 11:49:43 +01:00
Matthew Honnibal
b2bfd1e1c8 Move dropout and batch sizes out of global scope in train cmd 2018-12-07 20:54:35 +01:00
Ines Montani
f37863093a 💫 Replace ujson, msgpack and dill/pickle/cloudpickle with srsly (#3003)
Remove hacks and wrappers, keep code in sync across our libraries and move spaCy a few steps closer to only depending on packages with binary wheels 🎉

See here: https://github.com/explosion/srsly

    Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy have steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.

    At the same time, we noticed that having a lot of small dependencies was making maintainence harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.

    srsly currently includes forks of the following packages:

        ujson
        msgpack
        msgpack-numpy
        cloudpickle



* WIP: replace json/ujson with srsly

* Replace ujson in examples

Use regular json instead of srsly to make code easier to read and follow

* Update requirements

* Fix imports

* Fix typos

* Replace msgpack with srsly

* Fix warning
2018-12-03 01:28:22 +01:00
Matthew Honnibal
d9d339186b Fix dropout and batch-size defaults 2018-12-01 13:42:35 +00:00
Matthew Honnibal
3139b020b5 Fix train script 2018-11-30 22:17:08 +00:00
Ines Montani
37c7c85a86 💫 New JSON helpers, training data internals & CLI rewrite (#2932)
* Support nowrap setting in util.prints

* Tidy up and fix whitespace

* Simplify script and use read_jsonl helper

* Add JSON schemas (see #2928)

* Deprecate Doc.print_tree

Will be replaced with Doc.to_json, which will produce a unified format

* Add Doc.to_json() method (see #2928)

Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.

* Remove outdated test

* Add write_json and write_jsonl helpers

* WIP: Update spacy train

* Tidy up spacy train

* WIP: Use wasabi for formatting

* Add GoldParse helpers for JSON format

* WIP: add debug-data command

* Fix typo

* Add missing import

* Update wasabi pin

* Add missing import

* 💫 Refactor CLI (#2943)

To be merged into #2932.

## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Update wasabi pin

* Delete old test

* Update errors

* Fix typo

* Tidy up and format remaining code

* Fix formatting

* Improve formatting of messages

* Auto-format remaining code

* Add tok2vec stuff to spacy.train

* Fix typo

* Update wasabi pin

* Fix path checks for when train() is called as function

* Reformat and tidy up pretrain script

* Update argument annotations

* Raise error if model language doesn't match lang

* Document new train command
2018-11-30 20:16:14 +01:00
Matthew Honnibal
ef0820827a
Update hyper-parameters after NER random search (#2972)
These experiments were completed a few weeks ago, but I didn't make the PR, pending model release.

    Token vector width: 128->96
    Hidden width: 128->64
    Embed size: 5000->2000
    Dropout: 0.2->0.1
    Updated optimizer defaults (unclear how important?)

This should improve speed, model size and load time, while keeping
similar or slightly better accuracy.

The tl;dr is we prefer to prevent over-fitting by reducing model size,
rather than using more dropout.
2018-11-27 18:49:52 +01:00
Matthew Honnibal
2874b8efd8 Fix tok2vec loading in spacy train 2018-11-15 23:34:54 +00:00
Matthew Honnibal
8fdb9bc278
💫 Add experimental ULMFit/BERT/Elmo-like pretraining (#2931)
* Add 'spacy pretrain' command

* Fix pretrain command for Python 2

* Fix pretrain command

* Fix pretrain command
2018-11-15 22:17:16 +01:00
Matthew Honnibal
595c893791 Expose noise_level option in train CLI 2018-08-16 00:41:44 +02:00
Matthew Honnibal
4336397ecb Update develop from master 2018-08-14 03:04:28 +02:00
Xiaoquan Kong
f0c9652ed1 New Feature: display more detail when Error E067 (#2639)
* Fix off-by-one error

* Add verbose option

* Update verbose option

* Update documents for verbose option
2018-08-07 10:45:29 +02:00
Matthew Honnibal
c83fccfe2a Fix output of best model 2018-06-25 23:05:56 +02:00
Matthew Honnibal
c4698f5712 Don't collate model unless training succeeds 2018-06-25 16:36:42 +02:00
Matthew Honnibal
24dfbb8a28 Fix model collation 2018-06-25 14:35:24 +02:00
Matthew Honnibal
62237755a4 Import shutil 2018-06-25 13:40:17 +02:00
Matthew Honnibal
a040fca99e Import json into cli.train 2018-06-25 11:50:37 +02:00
Matthew Honnibal
2c703d99c2 Fix collation of best models 2018-06-25 01:21:34 +02:00
Matthew Honnibal
2c80b7c013 Collate best model after training 2018-06-24 23:39:52 +02:00
ines
330c039106 Merge branch 'master' into develop 2018-05-26 18:30:52 +02:00
James Messinger
4515e96e90 Better formatting for spacy train CLI (#2357)
* Better formatting for `spacy train` CLI

Changed to use fixed-spaces rather than tabs to align table headers and data.

### Before:
```
Itn.    P.Loss  N.Loss  UAS     NER P.  NER R.  NER F.  Tag %   Token %
0       4618.857        2910.004        76.172  79.645  67.987  88.732  88.261  100.000 4436.9  6376.4
1       4671.972        3764.812        74.481  78.046  62.374  82.680  88.377  100.000 4672.2  6227.1
2       4742.756        3673.473        71.994  77.380  63.966  84.494  90.620  100.000 4298.0  5983.9
```

### After:
```
Itn.  Dep Loss  NER Loss  UAS     NER P.  NER R.  NER F.  Tag %   Token %  CPU WPS  GPU WPS
0     4618.857  2910.004  76.172  79.645  67.987  88.732  88.261  100.000  4436.9   6376.4
1     4671.972  3764.812  74.481  78.046  62.374  82.680  88.377  100.000  4672.2   6227.1
2     4742.756  3673.473  71.994  77.380  63.966  84.494  90.620  100.000  4298.0   5983.9
```

* Added contributor file
2018-05-25 13:08:45 +02:00
Matthew Honnibal
2c4a6d66fa Merge master into develop. Big merge, many conflicts -- need to review 2018-04-29 14:49:26 +02:00
Ines Montani
3141e04822
💫 New system for error messages and warnings (#2163)
* Add spacy.errors module

* Update deprecation and user warnings

* Replace errors and asserts with new error message system

* Remove redundant asserts

* Fix whitespace

* Add messages for print/util.prints statements

* Fix typo

* Fix typos

* Move CLI messages to spacy.cli._messages

* Add decorator to display error code with message

An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc.

* Remove unused link in spacy.about

* Update errors for invalid pipeline components

* Improve error for unknown factories

* Add displaCy warnings

* Update formatting consistency

* Move error message to spacy.errors

* Update errors and check if doc returned by component is None
2018-04-03 15:50:31 +02:00
Matthew Honnibal
17c3e7efa2 Add message noting vectors 2018-03-28 16:33:43 +02:00
Matthew Honnibal
1f7229f40f Revert "Merge branch 'develop' of https://github.com/explosion/spaCy into develop"
This reverts commit c9ba3d3c2d, reversing
changes made to 92c26a35d4.
2018-03-27 19:23:02 +02:00
Matthew Honnibal
86405e4ad1 Fix CLI for multitask objectives 2018-02-18 10:59:11 +01:00
Matthew Honnibal
a34749b2bf Add multitask objectives options to train CLI 2018-02-17 22:03:54 +01:00
Matthew Honnibal
262d0a3148 Fix overwriting of lexical attributes when loading vectors during training 2018-02-17 18:11:11 +01:00
Johannes Dollinger
bf94c13382 Don't fix random seeds on import 2018-02-13 12:42:23 +01:00
Søren Lind Kristiansen
7f0ab145e9 Don't pass CLI command name as dummy argument 2018-01-04 21:33:47 +01:00
Søren Lind Kristiansen
a9ff6eadc9 Prefix dummy argument names with underscore 2018-01-03 20:48:12 +01:00
Isaac Sijaranamual
20ae0c459a Fixes "Error saving model" #1622 2017-12-10 23:07:13 +01:00
Isaac Sijaranamual
e188b61960 Make cli/train.py not eat exception 2017-12-10 22:53:08 +01:00
Matthew Honnibal
c2bbf076a4 Add document length cap for training 2017-11-03 01:54:54 +01:00
ines
37e62ab0e2 Update vector meta in meta.json 2017-11-01 01:25:09 +01:00
Matthew Honnibal
3659a807b0 Remove vector pruning arg from train CLI 2017-10-31 19:21:05 +01:00
Matthew Honnibal
e98451b5f7 Add -prune-vectors argument to spacy.cly.train 2017-10-30 18:00:10 +01:00
ines
d941fc3667 Tidy up CLI 2017-10-27 14:38:39 +02:00
ines
11e3f19764 Fix vectors data added after training (see #1457) 2017-10-25 16:08:26 +02:00
ines
273e638183 Add vector data to model meta after training (see #1457) 2017-10-25 16:03:05 +02:00
Matthew Honnibal
a955843684 Increase default number of epochs 2017-10-12 13:13:01 +02:00
Matthew Honnibal
acba2e1051 Fix metadata in training 2017-10-11 08:55:52 +02:00
Matthew Honnibal
74c2c6a58c Add default name and lang to meta 2017-10-11 08:49:12 +02:00
Matthew Honnibal
5156074df1 Make loading code more consistent in train command 2017-10-10 12:51:20 -05:00
Matthew Honnibal
97c9b5db8b Patch spacy.train for new pipeline management 2017-10-09 23:41:16 -05:00
Matthew Honnibal
808d8740d6 Remove print statement 2017-10-09 08:45:20 -05:00
Matthew Honnibal
0f41b25f60 Add speed benchmarks to metadata 2017-10-09 08:05:37 -05:00
Matthew Honnibal
be4f0b6460 Update defaults 2017-10-08 02:08:12 -05:00
Matthew Honnibal
9d66a915da Update training defaults 2017-10-07 21:02:38 -05:00
Matthew Honnibal
c6cd81f192 Wrap try/except around model saving 2017-10-05 08:14:24 -05:00
Matthew Honnibal
5743b06e36 Wrap model saving in try/except 2017-10-05 08:12:50 -05:00
Matthew Honnibal
8902df44de Fix component disabling during training 2017-10-02 21:07:23 +02:00
Matthew Honnibal
c617d288d8 Update pipeline component names in spaCy train 2017-10-02 17:20:19 +02:00
Matthew Honnibal
ac8481a7b0 Print NER loss 2017-09-28 08:05:31 -05:00
Matthew Honnibal
542ebfa498 Improve defaults 2017-09-27 18:54:37 -05:00
Matthew Honnibal
dcb86bdc43 Default batch size to 32 2017-09-27 11:48:19 -05:00
ines
1ff62eaee7 Fix option shortcut to avoid conflict 2017-09-26 17:59:34 +02:00
ines
7fdfb78141 Add version option to cli.train 2017-09-26 17:34:52 +02:00
Matthew Honnibal
698fc0d016 Remove merge artefact 2017-09-26 08:31:37 -05:00
Matthew Honnibal
defb68e94f Update feature/noshare with recent develop changes 2017-09-26 08:15:14 -05:00
ines
edf7e4881d Add meta.json option to cli.train and add relevant properties
Add accuracy scores to meta.json instead of accuracy.json and replace
all relevant properties like lang, pipeline, spacy_version in existing
meta.json. If not present, also add name and version placeholders to
make it packagable.
2017-09-25 19:00:47 +02:00
Matthew Honnibal
204b58c864 Fix evaluation during training 2017-09-24 05:01:03 -05:00
Matthew Honnibal
dc3a623d00 Remove unused update_shared argument 2017-09-24 05:00:37 -05:00
Matthew Honnibal
4348c479fc Merge pre-trained vectors and noshare patches 2017-09-22 20:07:28 -05:00
Matthew Honnibal
e93d43a43a Fix training with preset vectors 2017-09-22 20:00:40 -05:00
Matthew Honnibal
a2357cce3f Set random seed in train script 2017-09-23 02:57:31 +02:00
Matthew Honnibal
0a9016cade Fix serialization during training 2017-09-21 13:06:45 -05:00
Matthew Honnibal
20193371f5 Don't share CNN, to reduce complexities 2017-09-21 14:59:48 +02:00
Matthew Honnibal
1d73dec8b1 Refactor train script 2017-09-20 19:17:10 -05:00
Matthew Honnibal
a0c4b33d03 Support resuming a model during spacy train 2017-09-18 18:04:47 -05:00
Matthew Honnibal
8496d76224 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2017-09-14 09:21:20 -05:00
Matthew Honnibal
24ff6b0ad9 Fix parsing and tok2vec models 2017-09-06 05:50:58 -05:00
Matthew Honnibal
e920885676 Fix pickle during train 2017-09-02 12:46:01 -05:00
Matthew Honnibal
7a6edeea68 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2017-08-20 12:55:39 -05:00
Matthew Honnibal
f2f9229964 Fix name of update_shared flag 2017-08-20 18:19:06 +02:00
Matthew Honnibal
84bb543e4d Add gold_preproc flag to cli/train 2017-08-20 11:07:00 -05:00
Matthew Honnibal
11c31d285c Restore changes from nn-beam-parser 2017-08-18 22:26:12 +02:00
Matthew Honnibal
52c180ecf5 Revert "Merge branch 'develop' of https://github.com/explosion/spaCy into develop"
This reverts commit ea8de11ad5, reversing
changes made to 08e443e083.
2017-08-14 13:00:23 +02:00
Matthew Honnibal
8870d491f1 Remove redundant pickling during training 2017-08-12 08:55:53 -05:00
Matthew Honnibal
0a566dc320 Add update_tensors flag to Language.update. Experimental, re #1182 2017-08-06 02:18:12 +02:00
Matthew Honnibal
c52fde40f4 Improve train CLI 2017-06-04 20:18:37 -05:00
Matthew Honnibal
21eef90dbc Support specifying which GPU 2017-06-03 16:10:23 -05:00
Matthew Honnibal
43353b5413 Improve train CLI script 2017-06-03 13:28:20 -05:00
Matthew Honnibal
8a693c2605 Write binary file during training 2017-05-31 02:59:18 +02:00
Matthew Honnibal
49235017bf Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2017-05-27 16:34:28 -05:00
Matthew Honnibal
5e4312feed Evaluate loaded class, to ensure save/load works 2017-05-27 15:47:02 -05:00
ines
086a06e7d7 Fix CLI docstrings and add command as first argument
Workaround for Plac
2017-05-27 20:01:46 +02:00
Matthew Honnibal
de13fe0305 Remove length cap on sentences 2017-05-27 08:20:32 -05:00
Matthew Honnibal
d65f99a720 Improve model saving in train script 2017-05-26 05:52:09 -05:00
Matthew Honnibal
df8015f05d Tweaks to train script 2017-05-25 17:15:24 -05:00
Matthew Honnibal
702fe74a4d Clean up spacy.cli.train 2017-05-25 16:16:30 -05:00
Matthew Honnibal
135a13790c Disable gold preprocessing 2017-05-24 20:10:20 -05:00
Matthew Honnibal
3959d778ac Revert "Revert "WIP on improving parser efficiency""
This reverts commit 532afef4a8.
2017-05-23 03:06:53 -05:00
Matthew Honnibal
532afef4a8 Revert "WIP on improving parser efficiency"
This reverts commit bdaac7ab44.
2017-05-23 03:05:25 -05:00
Matthew Honnibal
bdaac7ab44 WIP on improving parser efficiency 2017-05-23 02:59:31 -05:00
Matthew Honnibal
6e8dce2c05 Fix train command line args 2017-05-22 10:41:39 -05:00
Matthew Honnibal
ae8cf70dc1 Fix CLI train signature 2017-05-22 06:13:39 -05:00
ines
fc3ec733ea Reduce complexity in CLI
Remove now redundant model command and move plac annotations to cli
files
2017-05-22 12:28:58 +02:00
Matthew Honnibal
bc2294d7f1 Add support for fiddly hyper-parameters to train func 2017-05-22 04:51:08 -05:00
Matthew Honnibal
4e0988605a Pass through non-projective=True 2017-05-22 04:51:08 -05:00
Matthew Honnibal
e14533757b Use averaged params for evaluation 2017-05-22 04:51:08 -05:00
Matthew Honnibal
4c9202249d Refactor training, to fix memory leak 2017-05-21 09:07:06 -05:00
Matthew Honnibal
3376d4d6e8 Update the train script, fixing GPU memory leak 2017-05-19 18:15:50 -05:00
Matthew Honnibal
ca70b08661 Fix GPU training and evaluation 2017-05-18 08:30:33 -05:00
Matthew Honnibal
fc8d3a112c Add util.env_opt support: Can set hyper params through environment variables. 2017-05-18 04:36:53 -05:00
Matthew Honnibal
793430aa7a Get spaCy train command working with neural network
* Integrate models into pipeline
* Add basic serialization (maybe incorrect)
* Fix pickle on vocab
2017-05-17 12:04:50 +02:00
Matthew Honnibal
8cf097ca88 Redesign training to integrate NN components
* Obsolete .parser, .entity etc names in favour of .pipeline
* Components no longer create models on initialization
* Models created by loading method (from_disk(), from_bytes() etc), or
    .begin_training()
* Add .predict(), .set_annotations() methods in components
* Pass state through pipeline, to allow components to share information
    more flexibly.
2017-05-16 16:17:30 +02:00
Matthew Honnibal
5211645af3 Get data flowing through pipeline. Needs redesign 2017-05-16 11:21:59 +02:00
Matthew Honnibal
a9edb3aa1d Improve integration of NN parser, to support unified training API 2017-05-15 21:53:27 +02:00
ines
59c3b9d4dd Tidy up CLI and fix print functions 2017-05-07 23:25:29 +02:00
Matthew Honnibal
4f9657b42b Fix reporting if no dev data with train 2017-04-23 22:27:10 +02:00
ines
3a9710f356 Pass dev_scores to print_progress correctly (resolves #1008)
Only read scores attribute if command is used with dev_data, otherwise
default dev_scores to empty dict.
2017-04-23 15:58:40 +02:00
Matthew Honnibal
89a4f262fc Fix training methods 2017-04-16 13:00:37 -05:00
ines
d24589aa72 Clean up imports, unused code, whitespace, docstrings 2017-04-15 12:05:47 +02:00
ines
9952d3b08a Fix whitespace 2017-04-07 13:02:05 +02:00
Matthew Honnibal
2efdbc08ff Make training work with directories 2017-03-26 08:46:44 -05:00
Matthew Honnibal
9dcb58aaaf Merge CLI changes 2017-03-26 07:30:45 -05:00
Matthew Honnibal
6b7f7a2060 Connect parser L1 option to train CLI 2017-03-26 07:24:07 -05:00
Matthew Honnibal
dec5571bf3 Update train CLI 2017-03-26 07:16:52 -05:00
ines
53cf2f1c0e Make dev data optional 2017-03-26 11:48:17 +02:00
ines
0035fd9efe Add spacy train work in progress 2017-03-23 11:08:41 +01:00