Instead of unsetting lemmas on retokenized tokens, set the default
lemmas to:
* merge: concatenate any existing lemmas with `SPACY` preserved
* split: use the new `ORTH` values if lemmas were previously set,
otherwise leave unset
* Only set NORM on Token in retokenizer
Instead of setting `NORM` on both the token and lexeme, set `NORM` only
on the token.
The retokenizer tries to set all possible attributes with
`Token/Lexeme.set_struct_attr` so that it doesn't have to enumerate
which attributes are available for each. `NORM` is the only attribute
that's stored on both and for most cases it doesn't make sense to set
the global norms based on a individual retokenization. For lexeme-only
attributes like `IS_STOP` there's no way to avoid the global side
effects, but I think that `NORM` would be better only on the token.
* Fix test
* Refactor Token morph setting
* Remove `Token.morph_`
* Add `Token.set_morph()`
* `0` resets `token.c.morph` to unset
* Any other values are passed to `Morphology.add`
* Add token.morph setter to set from MorphAnalysis
In order to make it easier to construct `Doc` objects as training data,
modify how missing and blocked entity tokens are set to prioritize
setting `O` and missing entity tokens for training purposes over setting
blocked entity tokens.
* `Doc.ents` setter sets tokens outside entity spans to `O` regardless
of the current state of each token
* For `Doc.ents`, setting a span with a missing label sets the `ent_iob`
to missing instead of blocked
* `Doc.block_ents(spans)` marks spans as hard `O` for use with the
`EntityRecognizer`
* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
* `Doc.has_annotation(attr)` returns `True` for partial annotation
* `Doc.has_annotation(attr, require_complete=True)` returns `True` for
complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Clean up spacy.tokens
* Update `set_children_from_heads`:
* Don't check `dep` when setting lr_* or sentence starts
* Set all non-sentence starts to `False`
* Use `set_children_from_heads` in `Token.head` setter
* Reduce similar/duplicate code (admittedly adds a bit of overhead)
* Update sentence starts consistently
* Remove unused `Doc.set_parse`
* Minor changes:
* Declare cython variables (to avoid cython warnings)
* Clean up imports
* Modify set_children_from_heads to set token range
Modify `set_children_from_heads` so that it adjust tokens within a
specified range rather then the whole document.
Modify the `Token.head` setter to adjust only the tokens affected by the
new head assignment.
Modify `Token.morph` property so that `Token.c.morph` can be reset back
to an internal value of `0`. Allow setting `Token.morph` from a hash as
long as the morph string is already in the `StringStore`, setting it
indirectly through `Token.morph_` so that the value is added to the
morphology. If the hash is not in the `StringStore`, raise an error.
* ensure Language passes on valid examples for initialization
* fix tagger model initialization
* check for valid get_examples across components
* assume labels were added before begin_training
* fix senter initialization
* fix morphologizer initialization
* use methods to check arguments
* test textcat init, requires thinc>=8.0.0a31
* fix tok2vec init
* fix entity linker init
* use islice
* fix simple NER
* cleanup debug model
* fix assert statements
* fix tests
* throw error when adding a label if the output layer can't be resized anymore
* fix test
* add failing test for simple_ner
* UX improvements
* morphologizer UX
* assume begin_training gets a representative set and processes the labels
* remove assumptions for output of untrained NER model
* restore test for original purpose
* Add Lemmatizer and simplify related components
* Add `Lemmatizer` pipe with `lookup` and `rule` modes using the
`Lookups` tables.
* Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma)
* Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer,
or morph rules)
* Remove lemmatizer from `Vocab`
* Adjust many many tests
Differences:
* No default lookup lemmas
* No special treatment of TAG in `from_array` and similar required
* Easier to modify labels in a `Tagger`
* No extra strings added from morphology / tag map
* Fix test
* Initial fix for Lemmatizer config/serialization
* Adjust init test to be more generic
* Adjust init test to force empty Lookups
* Add simple cache to rule-based lemmatizer
* Convert language-specific lemmatizers
Convert language-specific lemmatizers to component lemmatizers. Remove
previous lemmatizer class.
* Fix French and Polish lemmatizers
* Remove outdated UPOS conversions
* Update Russian lemmatizer init in tests
* Add minimal init/run tests for custom lemmatizers
* Add option to overwrite existing lemmas
* Update mode setting, lookup loading, and caching
* Make `mode` an immutable property
* Only enforce strict `load_lookups` for known supported modes
* Move caching into individual `_lemmatize` methods
* Implement strict when lang is not found in lookups
* Fix tables/lookups in make_lemmatizer
* Reallow provided lookups and allow for stricter checks
* Add lookups asset to all Lemmatizer pipe tests
* Rename lookups in lemmatizer init test
* Clean up merge
* Refactor lookup table loading
* Add helper from `load_lemmatizer_lookups` that loads required and
optional lookups tables based on settings provided by a config.
Additional slight refactor of lookups:
* Add `Lookups.set_table` to set a table from a provided `Table`
* Reorder class definitions to be able to specify type as `Table`
* Move registry assets into test methods
* Refactor lookups tables config
Use class methods within `Lemmatizer` to provide the config for
particular modes and to load the lookups from a config.
* Add pipe and score to lemmatizer
* Simplify Tagger.score
* Add missing import
* Clean up imports and auto-format
* Remove unused kwarg
* Tidy up and auto-format
* Update docstrings for Lemmatizer
Update docstrings for Lemmatizer.
Additionally modify `is_base_form` API to take `Token` instead of
individual features.
* Update docstrings
* Remove tag map values from Tagger.add_label
* Update API docs
* Fix relative link in Lemmatizer API docs
* Add AttributeRuler for token attribute exceptions
Add the `AttributeRuler` to handle exceptions for token-level
attributes. The `AttributeRuler` uses `Matcher` patterns to identify
target spans and applies the specified attributes to the token at the
provided index in the matched span. A negative index can be used to
index from the end of the matched span. The retokenizer is used to
"merge" the individual tokens and assign them the provided attributes.
Helper functions can import existing tag maps and morph rules to the
corresponding `Matcher` patterns.
There is an additional minor bug fix for `MORPH` attributes in the
retokenizer to correctly normalize the values and to handle `MORPH`
alongside `_` in an attrs dict.
* Fix default name
* Update name in error message
* Extend AttributeRuler functionality
* Add option to initialize with a dict of AttributeRuler patterns
* Instead of silently discarding overlapping matches (the default
behavior for the retokenizer if only the attrs differ), split the
matches into disjoint sets and retokenize each set separately. This
allows, for instance, one pattern to set the POS and another pattern to
set the lemma. (If two matches modify the same attribute, it looks like
the attrs are applied in the order they were added, but it may not be
deterministic?)
* Improve types
* Sort spans before processing
* Fix index boundaries in Span
* Refactor retokenizer to separate attrs methods
Add top-level `normalize_token_attrs` and `set_token_attrs` methods.
* Update AttributeRuler to use refactored methods
Update `AttributeRuler` to replace use of full retokenizer with only the
relevant methods for normalizing and setting attributes for a single
token.
* Update spacy/pipeline/attributeruler.py
Co-authored-by: Ines Montani <ines@ines.io>
* Make API more similar to EntityRuler
* Add `AttributeRuler.add_patterns` to add patterns from a list of dicts
* Return list of dicts as property `AttributeRuler.patterns`
* Make attrs_unnormed private
* Add test loading patterns from assets
* Revert "Fix index boundaries in Span"
This reverts commit 8f8a5c3386.
* Add Span index boundary checks (#5861)
* Add Span index boundary checks
* Return Span-specific IndexError in all cases
* Simplify and fix if/else
Co-authored-by: Ines Montani <ines@ines.io>
* Allow Doc.char_span to snap to token boundaries
Add a `mode` option to allow `Doc.char_span` to snap to token
boundaries. The `mode` options:
* `strict`: character offsets must match token boundaries (default, same as
before)
* `inside`: all tokens completely within the character span
* `outside`: all tokens at least partially covered by the character span
Add a new helper function `token_by_char` that returns the token
corresponding to a character position in the text. Update
`token_by_start` and `token_by_end` to use `token_by_char` for more
efficient searching.
* Remove unused import
* Rename mode to alignment_mode
Rename `mode` to `alignment_mode` with the options
`strict`/`contract`/`expand`. Any unrecognized modes are silently
converted to `strict`.
* `MorphAnalysis.get` returns only the field values
* Move `_normalize_props` inside `Morphology` as
`Morphology.normalize_attrs` and simplify
* Simplify POS field detection/conversion
* Convert all non-POS features to strings
* `Morphology` returns an empty string for a missing morph to align
with the FEATS string returned for an existing morph
* Remove unused `list_to_feats`