* Update textcat scorer threshold behavior
For `textcat` (with exclusive classes) the scorer should always use a
threshold of 0.0 because there should be one predicted label per doc and
the numeric score for that particular label should not matter.
* Rename to test_textcat_multilabel_threshold
* Remove all uses of threshold for multi_label=False
* Update Scorer.score_cats API docs
* Add tests for score_cats with thresholds
* Update textcat API docs
* Fix types
* Convert threshold back to float
* Fix threshold type in docstring
* Improve formatting in Scorer API docs
* Store activations in Doc when `store_activations` is enabled
This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.
As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.
* Change type of `store_activations` to `Union[bool, List[str]]`
When the value is:
- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored
* Formatting fixes in Tagger
* Support store_activations in spancat and morphologizer
* Make Doc.activations type visible to MyPy
* textcat/textcat_multilabel: add store_activations option
* trainable_lemmatizer/entity_linker: add store_activations option
* parser/ner: do not currently support returning activations
* Extend tagger and senter tests
So that they, like the other tests, also check that we get no
activations if no activations were requested.
* Document `Doc.activations` and `store_activations` in the relevant pipes
* Start errors/warnings at higher numbers to avoid merge conflicts
Between the master and v4 branches.
* Add `store_activations` to docstrings.
* Replace store_activations setter by set_store_activations method
Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.
* Use dict comprehension suggested by @svlandeg
* Revert "Use dict comprehension suggested by @svlandeg"
This reverts commit 6e7b958f70.
* EntityLinker: add type annotations to _add_activations
* _store_activations: make kwarg-only, remove doc_scores_lens arg
* set_annotations: add type annotations
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TextCat.predict: return dict
* Make the `TrainablePipe.store_activations` property a bool
This means that we can also bring back `store_activations` setter.
* Remove `TrainablePipe.activations`
We do not need to enumerate the activations anymore since `store_activations` is
`bool`.
* Add type annotations for activations in predict/set_annotations
* Rename `TrainablePipe.store_activations` to `save_activations`
* Error E1400 is not used anymore
This error was used when activations were still `Union[bool, List[str]]`.
* Change wording in API docs after store -> save change
* docs: tag (save_)activations as new in spaCy 4.0
* Fix copied line in morphologizer activations test
* Don't train in any test_save_activations test
* Rename activations
- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
"guesses" -> "tree_ids".
* Remove unused W400 warning.
This warning was used when we still allowed the user to specify
which activations to save.
* Formatting fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Replace "kb_ids" by a constant
* spancat: replace a cast by an assertion
* Fix EOF spacing
* Fix comments in test_save_activations tests
* Do not set RNG seed in activation saving tests
* Revert "spancat: replace a cast by an assertion"
This reverts commit 0bd5730d16.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update documentation for dependency parser
* Update documentation for trainable_lemmatizer
* Update documentation for entity_linker
* Update documentation for ner
* Update documentation for morphologizer
* Update documentation for senter
* Update documentation for spancat
* Update documentation for tagger
* Update documentation for textcat
* Update documentation for tok2vec
* Run prettier on edited files
* Apply similar changes in transformer docs
* Remove need to say annotated example explicitly
I removed the need to say "Must contain at least one annotated Example"
because it's often a given that Examples will contain some gold-standard
annotation.
* Run prettier on transformer docs
* Fix Scorer.score_cats for missing labels
* Add test case for Scorer.score_cats missing labels
* semantic nitpick
* black formatting
* adjust test to give different results depending on multi_label setting
* fix loss function according to whether or not missing values are supported
* add note to docs
* small fixes
* make mypy happy
* Update spacy/pipeline/textcat.py
Co-authored-by: Florian Cäsar <florian.caesar@pm.me>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* Add textcat docs
* Add NER docs
* Add Entity Linker docs
* Add assigned fields docs for the tagger
This also adds a preamble, since there wasn't one.
* Add morphologizer docs
* Add dependency parser docs
* Update entityrecognizer docs
This is a little weird because `Doc.ents` is the only thing assigned to,
but it's actually a bidirectional property.
* Add token fields for entityrecognizer
* Fix section name
* Add entity ruler docs
* Add lemmatizer docs
* Add sentencizer/recognizer docs
* Update website/docs/api/entityrecognizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/entityruler.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/tagger.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/entityruler.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update type for Doc.ents
This was `Tuple[Span, ...]` everywhere but `Tuple[Span]` seems to be
correct.
* Run prettier
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Run prettier
* Add transformers section
This basically just moves and renames the "custom attributes" section
from the bottom of the page to be consistent with "assigned attributes"
on other pages.
I looked at moving the paragraph just above the section into the
section, but it includes the unrelated registry additions, so it seemed
better to leave it unchanged.
* Make table header consistent
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Raise an error for textcat with <2 labels
Raise an error if initializing a `textcat` component without at least
two labels.
* Add similar note to docs
* Update positive_label description in API docs
* add multi-label textcat to menu
* add infobox on textcat API
* add info to v3 migration guide
* small edits
* further fixes in doc strings
* add infobox to textcat architectures
* add textcat_multilabel to overview of built-in components
* spelling
* fix unrelated warn msg
* Add textcat_multilabel to quickstart [ci skip]
* remove separate documentation page for multilabel_textcategorizer
* small edits
* positive label clarification
* avoid duplicating information in self.cfg and fix textcat.score
* fix multilabel textcat too
* revert threshold to storage in cfg
* revert threshold stuff for multi-textcat
Co-authored-by: Ines Montani <ines@ines.io>
* multi-label textcat component
* formatting
* fix comment
* cleanup
* fix from #6481
* random edit to push the tests
* add explicit error when textcat is called with multi-label gold data
* fix error nr
* small fix
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* typo fix
* add candidate API to kb documentation
* update API sidebar with EntityLinker and KnowledgeBase
* remove EL from 101 docs
* remove entity linker from 101 pipelines / rephrase
* custom el model instead of existing model
* set version to 2.2 for EL functionality
* update documentation for 2 CLI scripts
* Fix code for bag-of-words feature extraction
The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).
* Support 'bow' architecture for TextCategorizer
This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.
* Fix size limits in train_textcat example
* Explain architectures better in docs
* Make serialization methods consistent
exclude keyword argument instead of random named keyword arguments and deprecation handling
* Update docs and add section on serialization fields
<!--- Provide a general summary of your changes in the title. -->
## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs
### Types of change
enhancement, docs
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.