2020-07-08 14:34:35 +03:00
---
title: Morphologizer
tag: class
source: spacy/pipeline/morphologizer.pyx
new: 3
2020-07-27 19:11:45 +03:00
teaser: 'Pipeline component for predicting morphological features'
api_base_class: /api/tagger
api_string_name: morphologizer
api_trainable: true
2020-07-08 14:34:35 +03:00
---
2020-07-20 13:53:02 +03:00
A trainable pipeline component to predict morphological features and
coarse-grained POS tags following the Universal Dependencies
[UPOS ](https://universaldependencies.org/u/pos/index.html ) and
[FEATS ](https://universaldependencies.org/format.html#morphological-annotation )
2020-07-27 19:11:45 +03:00
annotation guidelines.
2020-07-08 14:34:35 +03:00
2021-09-01 13:09:39 +03:00
## Assigned Attributes {#assigned-attributes}
Predictions are saved to `Token.morph` and `Token.pos` .
| Location | Value |
| ------------- | ----------------------------------------- |
| `Token.pos` | The UPOS part of speech (hash). ~~int~~ |
| `Token.pos_` | The UPOS part of speech. ~~str~~ |
| `Token.morph` | Morphological features. ~~MorphAnalysis~~ |
2020-07-27 19:11:45 +03:00
## Config and implementation {#config}
2020-07-08 14:34:35 +03:00
2020-07-27 19:11:45 +03:00
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe` ](/api/language#add_pipe ) or in your
[`config.cfg` for training ](/usage/training#config ). See the
[model architectures ](/api/architectures ) documentation for details on the
architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy.pipeline.morphologizer import DEFAULT_MORPH_MODEL
> config = {"model": DEFAULT_MORPH_MODEL}
> nlp.add_pipe("morphologizer", config=config)
> ```
Store activations in `Doc`s when `save_activations` is enabled (#11002)
* Store activations in Doc when `store_activations` is enabled
This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.
As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.
* Change type of `store_activations` to `Union[bool, List[str]]`
When the value is:
- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored
* Formatting fixes in Tagger
* Support store_activations in spancat and morphologizer
* Make Doc.activations type visible to MyPy
* textcat/textcat_multilabel: add store_activations option
* trainable_lemmatizer/entity_linker: add store_activations option
* parser/ner: do not currently support returning activations
* Extend tagger and senter tests
So that they, like the other tests, also check that we get no
activations if no activations were requested.
* Document `Doc.activations` and `store_activations` in the relevant pipes
* Start errors/warnings at higher numbers to avoid merge conflicts
Between the master and v4 branches.
* Add `store_activations` to docstrings.
* Replace store_activations setter by set_store_activations method
Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.
* Use dict comprehension suggested by @svlandeg
* Revert "Use dict comprehension suggested by @svlandeg"
This reverts commit 6e7b958f7060397965176c69649e5414f1f24988.
* EntityLinker: add type annotations to _add_activations
* _store_activations: make kwarg-only, remove doc_scores_lens arg
* set_annotations: add type annotations
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TextCat.predict: return dict
* Make the `TrainablePipe.store_activations` property a bool
This means that we can also bring back `store_activations` setter.
* Remove `TrainablePipe.activations`
We do not need to enumerate the activations anymore since `store_activations` is
`bool`.
* Add type annotations for activations in predict/set_annotations
* Rename `TrainablePipe.store_activations` to `save_activations`
* Error E1400 is not used anymore
This error was used when activations were still `Union[bool, List[str]]`.
* Change wording in API docs after store -> save change
* docs: tag (save_)activations as new in spaCy 4.0
* Fix copied line in morphologizer activations test
* Don't train in any test_save_activations test
* Rename activations
- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
"guesses" -> "tree_ids".
* Remove unused W400 warning.
This warning was used when we still allowed the user to specify
which activations to save.
* Formatting fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Replace "kb_ids" by a constant
* spancat: replace a cast by an assertion
* Fix EOF spacing
* Fix comments in test_save_activations tests
* Do not set RNG seed in activation saving tests
* Revert "spancat: replace a cast by an assertion"
This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
| Setting | Description |
| ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | The model to use. Defaults to [Tagger ](/api/architectures#Tagger ). ~~Model[List[Doc], List[Floats2d]]~~ |
| `overwrite` < Tag variant = "new" > 3.2</ Tag > | Whether the values of existing features are overwritten. Defaults to `True` . ~~bool~~ |
| `extend` < Tag variant = "new" > 3.2</ Tag > | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite` ) are preserved. Defaults to `False` . ~~bool~~ |
| `scorer` < Tag variant = "new" > 3.2</ Tag > | The scoring method. Defaults to [`Scorer.score_token_attr` ](/api/scorer#score_token_attr ) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat` ](/api/scorer#score_token_attr_per_feat ) for the attribute `"morph"` . ~~Optional[Callable]~~ |
| `save_activations` < Tag variant = "new" > 4.0</ Tag > | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"` . ~~Union[bool, list[str]]~~ |
2020-07-08 14:34:35 +03:00
```python
2020-09-12 18:05:10 +03:00
%%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx
2020-07-08 14:34:35 +03:00
```
2020-07-20 13:53:02 +03:00
## Morphologizer.\_\_init\_\_ {#init tag="method"}
2020-08-17 17:45:24 +03:00
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe` ](/api/language#add_pipe ).
2020-07-20 13:53:02 +03:00
2021-10-11 11:35:07 +03:00
The `overwrite` and `extend` settings determine how existing annotation is
handled (with the example for existing annotation `A=B|C=D` + predicted
annotation `C=E|X=Y` ):
- `overwrite=True, extend=True` : overwrite values of existing features, add any
new features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=E|X=Y` )
- `overwrite=True, extend=False` : overwrite completely, removing any existing
features (`A=B|C=D` + `C=E|X=Y` → `C=E|X=Y` )
- `overwrite=False, extend=True` : keep values of existing features, add any new
features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D|X=Y` )
- `overwrite=False, extend=False` : do not modify the existing annotation if set
(`A=B|C=D` + `C=E|X=Y` → `A=B|C=D` )
2020-07-20 13:53:02 +03:00
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> # Construction via add_pipe with default model
2020-07-27 01:29:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-27 19:11:45 +03:00
>
> # Construction via create_pipe with custom model
> config = {"model": {"@architectures": "my_morphologizer"}}
> morphologizer = nlp.add_pipe("morphologizer", config=config)
>
> # Construction from class
> from spacy.pipeline import Morphologizer
> morphologizer = Morphologizer(nlp.vocab, model)
2020-07-20 13:53:02 +03:00
> ```
2021-10-11 11:35:07 +03:00
| Name | Description |
| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model` ](https://thinc.ai/docs/api-model ) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `overwrite` < Tag variant = "new" > 3.2</ Tag > | Whether the values of existing features are overwritten. Defaults to `True` . ~~bool~~ |
| `extend` < Tag variant = "new" > 3.2</ Tag > | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite` ) are preserved. Defaults to `False` . ~~bool~~ |
| `scorer` < Tag variant = "new" > 3.2</ Tag > | The scoring method. Defaults to [`Scorer.score_token_attr` ](/api/scorer#score_token_attr ) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat` ](/api/scorer#score_token_attr_per_feat ) for the attribute `"morph"` . ~~Optional[Callable]~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
2020-07-27 01:29:45 +03:00
[`__call__` ](/api/morphologizer#call ) and [`pipe` ](/api/morphologizer#pipe )
delegate to the [`predict` ](/api/morphologizer#predict ) and
2020-07-20 13:53:02 +03:00
[`set_annotations` ](/api/morphologizer#set_annotations ) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> # This usually happens under the hood
> processed = morphologizer(doc)
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | -------------------------------- |
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__` ](/api/morphologizer#call ) and
2020-07-27 01:29:45 +03:00
[`pipe` ](/api/morphologizer#pipe ) delegate to the
[`predict` ](/api/morphologizer#predict ) and
2020-07-20 13:53:02 +03:00
[`set_annotations` ](/api/morphologizer#set_annotations ) methods.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> for doc in morphologizer.pipe(docs, batch_size=50):
> pass
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128` . ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
2020-07-27 19:11:45 +03:00
2020-09-28 22:35:09 +03:00
## Morphologizer.initialize {#initialize tag="method"}
2020-07-27 19:11:45 +03:00
2020-09-29 17:59:21 +03:00
Initialize the component for training. `get_examples` should be a function that
2022-08-03 17:53:02 +03:00
returns an iterable of [`Example` ](/api/example ) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
2020-08-11 21:57:23 +03:00
[inferring missing shapes ](https://thinc.ai/docs/usage-models#validation ) and
2020-09-29 17:59:21 +03:00
setting up the label scheme based on the data. This method is typically called
2020-10-01 18:38:17 +03:00
by [`Language.initialize` ](/api/language#initialize ) and lets you customize
arguments it receives via the
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
config.
2020-07-27 19:11:45 +03:00
> #### Example
>
> ```python
> morphologizer = nlp.add_pipe("morphologizer")
2022-08-03 17:53:02 +03:00
> morphologizer.initialize(lambda: examples, nlp=nlp)
2020-07-27 19:11:45 +03:00
> ```
2020-10-01 18:38:17 +03:00
>
> ```ini
> ### config.cfg
> [initialize.components.morphologizer]
>
> [initialize.components.morphologizer.labels]
> @readers = "spacy.read_labels.v1"
> path = "corpus/labels/morphologizer.json
> ```
2020-07-27 19:11:45 +03:00
2020-10-03 17:08:24 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
2022-08-03 17:53:02 +03:00
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example` ](/api/example ) objects. Must contain at least one `Example` . ~~Callable[[], Iterable[Example]]~~ |
2020-10-03 17:08:24 +03:00
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None` . ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data` ](#label_data ) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels` ](/api/cli#init-labels ) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[dict]~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.predict {#predict tag="method"}
2020-08-10 14:45:22 +03:00
Apply the component's model to a batch of [`Doc` ](/api/doc ) objects, without
modifying them.
2020-07-20 13:53:02 +03:00
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> scores = morphologizer.predict([doc1, doc2])
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | ------------------------------------------- |
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The model's prediction for each document. |
2020-07-20 13:53:02 +03:00
## Morphologizer.set_annotations {#set_annotations tag="method"}
2020-08-10 14:45:22 +03:00
Modify a batch of [`Doc` ](/api/doc ) objects, using pre-computed scores.
2020-07-20 13:53:02 +03:00
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> scores = morphologizer.predict([doc1, doc2])
> morphologizer.set_annotations([doc1, doc2], scores)
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------- | ------------------------------------------------------- |
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `scores` | The scores to set, produced by `Morphologizer.predict` . |
2020-07-20 13:53:02 +03:00
## Morphologizer.update {#update tag="method"}
2020-08-10 14:45:22 +03:00
Learn from a batch of [`Example` ](/api/example ) objects containing the
predictions and gold-standard annotations, and update the component's model.
2021-01-25 17:18:45 +03:00
Delegates to [`predict` ](/api/morphologizer#predict ) and
[`get_loss` ](/api/morphologizer#get_loss ).
2020-07-20 13:53:02 +03:00
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-09-28 22:35:09 +03:00
> optimizer = nlp.initialize()
2020-07-20 13:53:02 +03:00
> losses = morphologizer.update(examples, sgd=optimizer)
> ```
2021-06-28 12:48:11 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example` ](/api/example ) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer` ](#create_optimizer ) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.get_loss {#get_loss tag="method"}
Find the loss and gradient of loss for the batch of documents and their
predicted scores.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> scores = morphologizer.predict([eg.predicted for eg in examples])
> loss, d_loss = morphologizer.get_loss(examples, scores)
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | --------------------------------------------------------------------------- |
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
| `scores` | Scores representing the model's predictions. |
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)` . ~~Tuple[float, float]~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> optimizer = morphologizer.create_optimizer()
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
2020-07-28 14:37:31 +03:00
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
2020-07-20 13:53:02 +03:00
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-28 14:37:31 +03:00
> with morphologizer.use_params(optimizer.averages):
2020-07-20 13:53:02 +03:00
> morphologizer.to_disk("/best_model")
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.add_label {#add_label tag="method"}
Add a new label to the pipe. If the `Morphologizer` should set annotations for
both `pos` and `morph` , the label should include the UPOS as the feature `POS` .
2020-09-09 17:18:38 +03:00
Raises an error if the output dimension is already set, or if the model has
2020-09-28 22:35:09 +03:00
already been fully [initialized ](#initialize ). Note that you don't have to call
this method if you provide a **representative data sample** to the
[`initialize` ](#initialize ) method. In this case, all labels found in the sample
will be automatically added to the model, and the output dimension will be
[inferred ](/usage/layers-architectures#thinc-shape-inference ) automatically.
2020-07-20 13:53:02 +03:00
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | ----------------------------------------------------------- |
| `label` | The label to add. ~~str~~ |
| **RETURNS** | `0` if the label is already present, otherwise `1` . ~~int~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> morphologizer.to_disk("/path/to/morphologizer")
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path` -like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields ](#serialization-fields ) to exclude. ~~Iterable[str]~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> morphologizer.from_disk("/path/to/morphologizer")
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path` -like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields ](#serialization-fields ) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `Morphologizer` object. ~~Morphologizer~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> morphologizer_bytes = morphologizer.to_bytes()
> ```
Serialize the pipe to a bytestring.
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields ](#serialization-fields ) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `Morphologizer` object. ~~bytes~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> morphologizer_bytes = morphologizer.to_bytes()
2020-07-27 19:11:45 +03:00
> morphologizer = nlp.add_pipe("morphologizer")
2020-07-20 13:53:02 +03:00
> morphologizer.from_bytes(morphologizer_bytes)
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields ](#serialization-fields ) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `Morphologizer` object. ~~Morphologizer~~ |
2020-07-20 13:53:02 +03:00
## Morphologizer.labels {#labels tag="property"}
2020-08-17 17:45:24 +03:00
The labels currently added to the component in the Universal Dependencies
[FEATS ](https://universaldependencies.org/format.html#morphological-annotation )
format. Note that even for a blank component, this will always include the
internal empty label `_` . If POS features are used, the labels will include the
2020-07-20 13:53:02 +03:00
coarse-grained POS as the feature `POS` .
> #### Example
>
> ```python
> morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
> ```
Store activations in `Doc`s when `save_activations` is enabled (#11002)
* Store activations in Doc when `store_activations` is enabled
This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.
As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.
* Change type of `store_activations` to `Union[bool, List[str]]`
When the value is:
- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored
* Formatting fixes in Tagger
* Support store_activations in spancat and morphologizer
* Make Doc.activations type visible to MyPy
* textcat/textcat_multilabel: add store_activations option
* trainable_lemmatizer/entity_linker: add store_activations option
* parser/ner: do not currently support returning activations
* Extend tagger and senter tests
So that they, like the other tests, also check that we get no
activations if no activations were requested.
* Document `Doc.activations` and `store_activations` in the relevant pipes
* Start errors/warnings at higher numbers to avoid merge conflicts
Between the master and v4 branches.
* Add `store_activations` to docstrings.
* Replace store_activations setter by set_store_activations method
Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.
* Use dict comprehension suggested by @svlandeg
* Revert "Use dict comprehension suggested by @svlandeg"
This reverts commit 6e7b958f7060397965176c69649e5414f1f24988.
* EntityLinker: add type annotations to _add_activations
* _store_activations: make kwarg-only, remove doc_scores_lens arg
* set_annotations: add type annotations
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TextCat.predict: return dict
* Make the `TrainablePipe.store_activations` property a bool
This means that we can also bring back `store_activations` setter.
* Remove `TrainablePipe.activations`
We do not need to enumerate the activations anymore since `store_activations` is
`bool`.
* Add type annotations for activations in predict/set_annotations
* Rename `TrainablePipe.store_activations` to `save_activations`
* Error E1400 is not used anymore
This error was used when activations were still `Union[bool, List[str]]`.
* Change wording in API docs after store -> save change
* docs: tag (save_)activations as new in spaCy 4.0
* Fix copied line in morphologizer activations test
* Don't train in any test_save_activations test
* Rename activations
- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
"guesses" -> "tree_ids".
* Remove unused W400 warning.
This warning was used when we still allowed the user to specify
which activations to save.
* Formatting fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Replace "kb_ids" by a constant
* spancat: replace a cast by an assertion
* Fix EOF spacing
* Fix comments in test_save_activations tests
* Do not set RNG seed in activation saving tests
* Revert "spancat: replace a cast by an assertion"
This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
| Name | Description |
| ----------- | --------------------------------------------------------- |
2022-07-15 12:14:08 +03:00
| **RETURNS** | The labels added to the component. ~~Iterable[str, ...]~~ |
2020-07-20 13:53:02 +03:00
2020-10-03 17:08:24 +03:00
## Morphologizer.label_data {#label_data tag="property" new="3"}
The labels currently added to the component and their internal meta information.
This is the data generated by [`init labels` ](/api/cli#init-labels ) and used by
[`Morphologizer.initialize` ](/api/morphologizer#initialize ) to initialize the
model with a pre-defined label set.
> #### Example
>
> ```python
> labels = morphologizer.label_data
> morphologizer.initialize(lambda: [], nlp=nlp, labels=labels)
> ```
| Name | Description |
| ----------- | ----------------------------------------------- |
| **RETURNS** | The label data added to the component. ~~dict~~ |
2020-07-20 13:53:02 +03:00
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = morphologizer.to_disk("/path", exclude=["vocab"])
> ```
2020-07-27 01:29:45 +03:00
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab` ](/api/vocab ). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |