spaCy/spacy/syntax/parser.pyx

523 lines
19 KiB
Cython
Raw Normal View History

2014-12-16 14:44:43 +03:00
"""
MALT-style dependency parser
"""
2017-04-15 14:05:15 +03:00
# coding: utf-8
# cython: infer_types=True
2014-12-16 14:44:43 +03:00
from __future__ import unicode_literals
2017-04-15 14:05:15 +03:00
from collections import Counter
import ujson
2014-12-16 14:44:43 +03:00
cimport cython
2016-02-05 14:20:42 +03:00
cimport cython.parallel
import numpy.random
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 19:38:41 +03:00
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
2017-04-15 14:05:15 +03:00
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
2016-02-01 05:08:42 +03:00
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
2017-03-10 20:21:21 +03:00
2017-05-06 17:47:15 +03:00
from numpy import exp
2014-12-16 14:44:43 +03:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
2017-04-15 14:05:15 +03:00
from .nonproj import PseudoProjectivity
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from ..gold cimport GoldParse
from ..attrs cimport TAG, DEP
from .._ml import build_parser_state2vec, build_model
2017-05-06 21:38:12 +03:00
from .._ml import build_state2vec, build_model
2017-05-06 17:47:15 +03:00
from .._ml import build_debug_state2vec, build_debug_model
2017-04-15 14:05:15 +03:00
2014-12-16 14:44:43 +03:00
2017-04-16 19:02:42 +03:00
USE_FTRL = True
2015-04-19 11:31:31 +03:00
DEBUG = False
2014-12-16 14:44:43 +03:00
def set_debug(val):
global DEBUG
DEBUG = val
2017-05-05 20:20:39 +03:00
def get_templates(*args, **kwargs):
return []
cdef class Parser:
2017-04-15 14:05:15 +03:00
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
2017-04-15 14:05:15 +03:00
"""
Load the statistical model from the supplied path.
2016-11-01 14:25:36 +03:00
Arguments:
path (Path):
The path to load from.
vocab (Vocab):
The vocabulary. Must be shared by the documents to be processed.
require (bool):
Whether to raise an error if the files are not found.
Returns (Parser):
The newly constructed object.
"""
with (path / 'config.json').open() as file_:
2017-04-15 14:05:15 +03:00
cfg = ujson.load(file_)
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
if (path / 'model').exists():
self.model.load(str(path / 'model'))
elif require:
raise IOError(
"Required file %s/model not found when loading" % str(path))
return self
2017-05-04 13:17:36 +03:00
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
2017-04-15 14:05:15 +03:00
"""
Create a Parser.
2016-11-01 14:25:36 +03:00
Arguments:
vocab (Vocab):
The vocabulary object. Must be shared with documents to be processed.
2017-05-04 13:17:36 +03:00
model (thinc Model):
2016-11-01 14:25:36 +03:00
The statistical model.
Returns (Parser):
The newly constructed object.
"""
if TransitionSystem is None:
TransitionSystem = self.TransitionSystem
self.vocab = vocab
cfg['actions'] = TransitionSystem.get_actions(**cfg)
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
2017-05-04 13:17:36 +03:00
if model is None:
model = self.build_model(**cfg)
self.model = model
self.cfg = cfg
2017-05-05 20:20:39 +03:00
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
2017-05-06 19:24:38 +03:00
def build_model(self, width=64, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
2017-05-06 21:38:12 +03:00
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
state2vec = build_state2vec(nr_context_tokens, width, nr_vector)
#state2vec = build_debug_state2vec(width, nr_vector)
model = build_debug_model(state2vec, width*2, 2, self.moves.n_moves)
return model
def __call__(self, Doc tokens):
2017-04-15 14:05:15 +03:00
"""
2017-05-04 13:17:36 +03:00
Apply the parser or entity recognizer, setting the annotations onto the Doc object.
2016-11-01 14:25:36 +03:00
Arguments:
doc (Doc): The document to be processed.
Returns:
None
"""
2017-05-04 13:17:36 +03:00
self.parse_batch([tokens])
self.moves.finalize_doc(tokens)
2017-05-07 15:31:09 +03:00
def pipe(self, stream, int batch_size=1000, int n_threads=2):
2017-04-15 14:05:15 +03:00
"""
Process a stream of documents.
2016-11-01 14:25:36 +03:00
Arguments:
stream: The sequence of documents to process.
batch_size (int):
The number of documents to accumulate into a working set.
n_threads (int):
The number of threads with which to work on the buffer in parallel.
Yields (Doc): Documents, in order.
"""
cdef Pool mem = Pool()
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
2016-02-05 21:37:50 +03:00
queue.append(doc)
if len(queue) == batch_size:
2017-05-04 13:17:36 +03:00
self.parse_batch(queue)
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
2017-05-04 13:17:36 +03:00
if queue:
self.parse_batch(queue)
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
def parse_batch(self, docs):
states = self._init_states(docs)
nr_class = self.moves.n_moves
cdef Doc doc
cdef StateClass state
cdef int guess
tokvecs = [d.tensor for d in docs]
all_states = list(states)
todo = zip(states, tokvecs)
2017-05-07 15:31:09 +03:00
i = 0
while todo:
states, tokvecs = zip(*todo)
2017-05-06 17:47:15 +03:00
scores, _ = self._begin_update(states, tokvecs)
for state, guess in zip(states, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state.c, action.label)
2017-05-06 17:47:15 +03:00
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
2017-05-07 15:31:09 +03:00
i += 1
if i >= 10000:
break
for state, doc in zip(all_states, docs):
self.moves.finalize_state(state.c)
for i in range(doc.length):
doc.c[i] = state.c._sent[i]
2017-05-06 17:47:15 +03:00
def begin_training(self, docs, golds):
for gold in golds:
self.moves.preprocess_gold(gold)
2017-05-04 13:17:36 +03:00
states = self._init_states(docs)
tokvecs = [d.tensor for d in docs]
2017-05-05 20:20:39 +03:00
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
nr_class = self.moves.n_moves
2017-05-05 20:20:39 +03:00
costs = self.model.ops.allocate((len(docs), nr_class), dtype='f')
gradients = self.model.ops.allocate((len(docs), nr_class), dtype='f')
2017-05-05 20:20:39 +03:00
is_valid = self.model.ops.allocate((len(docs), nr_class), dtype='i')
2017-05-07 19:04:24 +03:00
attr_names = numpy.zeros((2,), dtype='i')
attr_names[0] = TAG
attr_names[1] = DEP
2017-05-06 18:37:36 +03:00
2017-05-06 17:47:15 +03:00
features = self._get_features(states, tokvecs, attr_names)
self.model.begin_training(features)
def update(self, docs, golds, drop=0., sgd=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
return self.update([docs], [golds], drop=drop)
for gold in golds:
self.moves.preprocess_gold(gold)
states = self._init_states(docs)
tokvecs = [d.tensor for d in docs]
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
nr_class = self.moves.n_moves
output = list(d_tokens)
todo = zip(states, tokvecs, golds, d_tokens)
assert len(states) == len(todo)
2017-05-06 18:37:36 +03:00
losses = []
2017-05-07 15:31:09 +03:00
i = 0
while todo:
states, tokvecs, golds, d_tokens = zip(*todo)
2017-05-06 17:47:15 +03:00
scores, finish_update = self._begin_update(states, tokvecs)
2017-05-06 18:37:36 +03:00
token_ids, batch_token_grads = finish_update(golds, sgd=sgd, losses=losses,
force_gold=False)
2017-05-07 19:04:24 +03:00
if hasattr(self.model.ops.xp, 'scatter_add'):
for i, tok_ids in enumerate(token_ids):
self.model.ops.xp.scatter_add(d_tokens[i],
tok_ids, batch_token_grads[i])
else:
for i, tok_ids in enumerate(token_ids):
self.model.ops.xp.add.at(d_tokens[i],
tok_ids, batch_token_grads[i])
2017-05-05 20:20:39 +03:00
self._transition_batch(states, scores)
# Get unfinished states (and their matching gold and token gradients)
2017-05-06 17:47:15 +03:00
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
2017-05-07 15:31:09 +03:00
i += 1
if i >= 10000:
break
2017-05-06 18:37:36 +03:00
return output, sum(losses)
2017-05-06 17:47:15 +03:00
def _begin_update(self, states, tokvecs, drop=0.):
nr_class = self.moves.n_moves
2017-05-07 19:04:24 +03:00
attr_names = numpy.zeros((2,), dtype='i')
2017-05-06 17:47:15 +03:00
attr_names[0] = TAG
attr_names[1] = DEP
features = self._get_features(states, tokvecs, attr_names)
scores, finish_update = self.model.begin_update(features, drop=drop)
2017-05-06 21:38:12 +03:00
assert scores.shape[0] == len(states), (len(states), scores.shape)
assert len(scores.shape) == 2
2017-05-06 17:47:15 +03:00
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
self._validate_batch(is_valid, states)
softmaxed = self.model.ops.softmax(scores)
softmaxed *= is_valid
2017-05-06 18:37:36 +03:00
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
def backward(golds, sgd=None, losses=[], force_gold=False):
nonlocal softmaxed
2017-05-06 17:47:15 +03:00
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
self._cost_batch(costs, is_valid, states, golds)
self._set_gradient(d_scores, scores, is_valid, costs)
2017-05-07 05:01:11 +03:00
losses.append(self.model.ops.xp.abs(d_scores).sum())
2017-05-06 18:37:36 +03:00
if force_gold:
softmaxed *= costs <= 0
2017-05-06 17:47:15 +03:00
return finish_update(d_scores, sgd=sgd)
return softmaxed, backward
2017-05-04 13:17:36 +03:00
def _init_states(self, docs):
states = []
cdef Doc doc
2017-05-05 20:20:39 +03:00
cdef StateClass state
2017-05-04 13:17:36 +03:00
for i, doc in enumerate(docs):
state = StateClass.init(doc.c, doc.length)
2017-05-05 20:20:39 +03:00
self.moves.initialize_state(state.c)
states.append(state)
2017-05-04 13:17:36 +03:00
return states
def _get_features(self, states, all_tokvecs, attr_names,
nF=1, nB=0, nS=2, nL=2, nR=2):
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
vector_length = all_tokvecs[0].shape[1]
2017-05-07 19:04:24 +03:00
cpu_tokens = numpy.zeros((len(states), n_tokens), dtype='int32')
features = numpy.zeros((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
for i, state in enumerate(states):
2017-05-07 19:04:24 +03:00
state.set_context_tokens(cpu_tokens[i], nF, nB, nS, nL, nR)
#state.set_attributes(features[i], tokens[i], attr_names)
gpu_tokens = self.model.ops.xp.array(cpu_tokens)
for i in range(len(states)):
tokvecs[i] = all_tokvecs[i][gpu_tokens[i]]
tokvecs *= (gpu_tokens >= 0).reshape((gpu_tokens.shape[0], gpu_tokens.shape[1], 1))
return (gpu_tokens, self.model.ops.asarray(features), tokvecs)
def _validate_batch(self, is_valid, states):
2017-05-05 20:20:39 +03:00
cdef StateClass state
cdef int i
2017-05-07 19:04:24 +03:00
cdef int[:, :] is_valid_cpu = is_valid.get()
2017-05-05 20:20:39 +03:00
for i, state in enumerate(states):
2017-05-07 19:04:24 +03:00
self.moves.set_valid(&is_valid_cpu[i, 0], state.c)
is_valid.set(numpy.asarray(is_valid_cpu))
2017-05-06 21:38:12 +03:00
2017-05-07 19:04:24 +03:00
def _cost_batch(self, costs, is_valid,
2017-05-05 20:20:39 +03:00
states, golds):
cdef int i
cdef StateClass state
cdef GoldParse gold
2017-05-07 19:04:24 +03:00
cdef int[:, :] is_valid_cpu = is_valid.get()
cdef weight_t[:, :] costs_cpu = costs.get()
2017-05-05 20:20:39 +03:00
for i, (state, gold) in enumerate(zip(states, golds)):
2017-05-07 19:04:24 +03:00
self.moves.set_costs(&is_valid_cpu[i, 0], &costs_cpu[i, 0], state, gold)
is_valid.set(numpy.asarray(is_valid_cpu))
costs.set(numpy.asarray(costs_cpu))
2017-05-05 20:20:39 +03:00
def _transition_batch(self, states, scores):
cdef StateClass state
cdef int guess
for state, guess in zip(states, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state.c, action.label)
2017-05-06 17:47:15 +03:00
def _set_gradient(self, gradients, scores, is_valid, costs):
2017-05-04 13:17:36 +03:00
"""Do multi-label log loss"""
cdef double Z, gZ, max_, g_max
2017-05-06 18:37:36 +03:00
n = gradients.shape[0]
2017-05-06 17:47:15 +03:00
scores = scores * is_valid
g_scores = scores * is_valid * (costs <= 0.)
2017-05-07 05:01:11 +03:00
exps = self.model.ops.xp.exp(scores - scores.max(axis=1).reshape((n, 1)))
2017-05-06 17:47:15 +03:00
exps *= is_valid
2017-05-07 05:01:11 +03:00
g_exps = self.model.ops.xp.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
2017-05-06 17:47:15 +03:00
g_exps *= costs <= 0.
g_exps *= is_valid
2017-05-06 18:37:36 +03:00
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
def step_through(self, Doc doc, GoldParse gold=None):
2017-04-15 14:05:15 +03:00
"""
Set up a stepwise state, to introspect and control the transition sequence.
2016-11-01 14:25:36 +03:00
Arguments:
doc (Doc): The document to step through.
gold (GoldParse): Optional gold parse
2016-11-01 14:25:36 +03:00
Returns (StepwiseState):
A state object, to step through the annotation process.
"""
return StepwiseState(self, doc, gold=gold)
def from_transition_sequence(self, Doc doc, sequence):
2016-11-01 14:25:36 +03:00
"""Control the annotations on a document by specifying a transition sequence
to follow.
Arguments:
doc (Doc): The document to annotate.
sequence: A sequence of action names, as unicode strings.
Returns: None
"""
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
# Doesn't set label into serializer -- subclasses override it to do that.
for action in self.moves.action_types:
2017-04-15 17:00:28 +03:00
added = self.moves.add_action(action, label)
if added:
# Important that the labels be stored as a list! We need the
# order, or the model goes out of synch
2017-04-15 17:00:28 +03:00
self.cfg.setdefault('extra_labels', []).append(label)
2017-03-08 03:38:51 +03:00
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
if prob <= 0 or prob >= 1.:
return 0
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
cdef double* probs = &py_probs[0]
for i in range(nr_feat):
if probs[i] >= prob:
feats[i].value /= prob
else:
feats[i].value = 0.
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly GoldParse gold
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
self.parser = parser
self.doc = doc
2017-04-15 14:35:01 +03:00
if gold is not None:
self.gold = gold
2017-04-15 17:00:28 +03:00
self.parser.moves.preprocess_gold(self.gold)
else:
self.gold = GoldParse(doc)
2015-11-03 16:15:14 +03:00
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
@property
def costs(self):
2017-04-15 14:05:15 +03:00
"""
Find the action-costs for the current state.
"""
2017-04-15 14:35:01 +03:00
if not self.gold:
raise ValueError("Can't set costs: No GoldParse provided")
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
self.stcls, self.gold)
costs = {}
for i in range(self.parser.moves.n_moves):
if not self.eg.c.is_valid[i]:
continue
transition = self.parser.moves.c[i]
name = self.parser.moves.move_name(transition.move, transition.label)
costs[name] = self.eg.c.costs[i]
return costs
def predict(self):
self.eg.reset()
2017-05-05 20:20:39 +03:00
#self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
# self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
2017-05-05 20:20:39 +03:00
#self.parser.model.set_scoresC(self.eg.c.scores,
# self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name=None):
if action_name is None:
action_name = self.predict()
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
2015-08-10 06:58:43 +03:00
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
class ParserStateError(ValueError):
2016-10-12 15:35:55 +03:00
def __init__(self, doc):
2016-10-12 15:44:31 +03:00
ValueError.__init__(self,
"Error analysing doc -- no valid actions available. This should "
"never happen, so please report the error on the issue tracker. "
"Here's the thread to do so --- reopen it if it's closed:\n"
"https://github.com/spacy-io/spaCy/issues/429\n"
"Please include the text that the parser failed on, which is:\n"
"%s" % repr(doc.text))
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
cdef int best = -1
for i in range(n):
if costs[i] <= 0:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
2015-08-10 06:58:43 +03:00
mode = i
score = scores[i]
return mode