* Remove imports marked as v2 leftovers
There are a few functions that were in `spacy.util` in v2, but were
moved to Thinc. In v3 these were imported in `spacy.util` so that code
could be used unchanged, but the comment over them indicates they should
always be imported from Thinc. This commit removes those imports.
It doesn't look like any DeprecationWarning was ever thrown for using
these, but it is probably fine to remove them anyway with a major
version. It is not clear that they were widely used.
* Import fix_random_seed correctly
This seems to be the only place in spaCy that was using the old import.
* Change enable/disable behavior so that arguments take precedence over config options. Extend error message on conflict. Add warning message in case of overwriting config option with arguments.
* Fix tests in test_serialize_pipeline.py to reflect changes to handling of enable/disable.
* Fix type issue.
* Move comment.
* Move comment.
* Issue UserWarning instead of printing wasabi message. Adjust test.
* Added pytest.warns(UserWarning) for expected warning to fix tests.
* Update warning message.
* Move type handling out of fetch_pipes_status().
* Add global variable for default value. Use id() to determine whether used values are default value.
* Fix default value for disable.
* Rename DEFAULT_PIPE_STATUS to _DEFAULT_EMPTY_PIPES.
* Store activations in Doc when `store_activations` is enabled
This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.
As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.
* Change type of `store_activations` to `Union[bool, List[str]]`
When the value is:
- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored
* Formatting fixes in Tagger
* Support store_activations in spancat and morphologizer
* Make Doc.activations type visible to MyPy
* textcat/textcat_multilabel: add store_activations option
* trainable_lemmatizer/entity_linker: add store_activations option
* parser/ner: do not currently support returning activations
* Extend tagger and senter tests
So that they, like the other tests, also check that we get no
activations if no activations were requested.
* Document `Doc.activations` and `store_activations` in the relevant pipes
* Start errors/warnings at higher numbers to avoid merge conflicts
Between the master and v4 branches.
* Add `store_activations` to docstrings.
* Replace store_activations setter by set_store_activations method
Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.
* Use dict comprehension suggested by @svlandeg
* Revert "Use dict comprehension suggested by @svlandeg"
This reverts commit 6e7b958f70.
* EntityLinker: add type annotations to _add_activations
* _store_activations: make kwarg-only, remove doc_scores_lens arg
* set_annotations: add type annotations
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TextCat.predict: return dict
* Make the `TrainablePipe.store_activations` property a bool
This means that we can also bring back `store_activations` setter.
* Remove `TrainablePipe.activations`
We do not need to enumerate the activations anymore since `store_activations` is
`bool`.
* Add type annotations for activations in predict/set_annotations
* Rename `TrainablePipe.store_activations` to `save_activations`
* Error E1400 is not used anymore
This error was used when activations were still `Union[bool, List[str]]`.
* Change wording in API docs after store -> save change
* docs: tag (save_)activations as new in spaCy 4.0
* Fix copied line in morphologizer activations test
* Don't train in any test_save_activations test
* Rename activations
- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
"guesses" -> "tree_ids".
* Remove unused W400 warning.
This warning was used when we still allowed the user to specify
which activations to save.
* Formatting fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Replace "kb_ids" by a constant
* spancat: replace a cast by an assertion
* Fix EOF spacing
* Fix comments in test_save_activations tests
* Do not set RNG seed in activation saving tests
* Revert "spancat: replace a cast by an assertion"
This reverts commit 0bd5730d16.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* replicate bug with tok2vec in annotating components
* add overfitting test with a frozen tok2vec
* remove broadcast from predict and check doc.tensor instead
* remove broadcast
* proper error
* slight rephrase of documentation
* adding unit test for spacy.load with disable/exclude string arg
* allow pure strings in from_config
* update docs
* upstream type adjustements
* docs update
* make docstring more consistent
* Update spacy/language.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* two more cleanups
* fix type in internal method
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Enable flag on spacy.load: foundation for include, enable arguments.
* Enable flag on spacy.load: fixed tests.
* Enable flag on spacy.load: switched from pretrained model to empty model with added pipes for tests.
* Enable flag on spacy.load: switched to more consistent error on misspecification of component activity. Test refactoring. Added to default config.
* Enable flag on spacy.load: added support for fields not in pipeline.
* Enable flag on spacy.load: removed serialization fields from supported fields.
* Enable flag on spacy.load: removed 'enable' from config again.
* Enable flag on spacy.load: relaxed checks in _resolve_component_activation_status() to allow non-standard pipes.
* Enable flag on spacy.load: fixed relaxed checks for _resolve_component_activation_status() to allow non-standard pipes. Extended tests.
* Enable flag on spacy.load: comments w.r.t. resolution workarounds.
* Enable flag on spacy.load: remove include fields. Update website docs.
* Enable flag on spacy.load: updates w.r.t. changes in master.
* Implement Doc.from_json(): update docstrings.
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Implement Doc.from_json(): remove newline.
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Implement Doc.from_json(): change error message for E1038.
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Enable flag on spacy.load: wrapped docstring for _resolve_component_status() at 80 chars.
* Enable flag on spacy.load: changed exmples for enable flag.
* Remove newline.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix docstring for Language._resolve_component_status().
* Rename E1038 to E1042.
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add SpanRuler component
Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.
* Update spacy/pipeline/span_ruler.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix cast
* Add self.key property
* Use number of patterns as length
* Remove patterns kwarg from init
* Update spacy/tests/pipeline/test_span_ruler.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add options for spans filter and setting to ents
* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.
* Update and generalize tests
* Add test for setting doc.ents, fix key property type
* Fix typing
* Allow independent doc.spans and doc.ents
* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
* Use `util.filter_spans` by default as `ents_filter`.
* Use a custom warning if the filter does not work for `doc.ents`.
* Enable use of SpanC.id in Span
* Support id in SpanRuler as Span.id
* Update types
* `id` can only be provided as string (already by `PatternType`
definition)
* Update all uses of Span.id/ent_id in Doc
* Rename Span id kwarg to span_id
* Update types and docs
* Add ents filter to mimic EntityRuler overwrite_ents
* Refactor `ents_filter` to take `entities, spans` args for more
filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
(`spacy.first_longest_spans_filter.v1`) to take any number of
`Iterable[Span]` objects as args so it can be used for spans filter
or ents filter
* Implement future entity ruler as span ruler
Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
customized. (Necessary for the same sorting/filtering as in
`EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
`preserve_existing_ents_filter` to support
`EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
`entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
properties.
Additional changes:
* Move all config settings to top-level attributes to avoid duplicating
settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
casting.)
* Format
* Fix filter make method name
* Refactor to use same error for removing by label or ID
* Also provide existing spans to spans filter
* Support ids property
* Remove token_patterns and phrase_patterns
* Update docstrings
* Add span ruler docs
* Fix types
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Move sorting into filters
* Check for all tokens in seen tokens in entity ruler filters
* Remove registered sort key
* Set Token.ent_id in a backwards-compatible way in Doc.set_ents
* Remove sort options from API docs
* Update docstrings
* Rename entity ruler filters
* Fix and parameterize scoring
* Add id to Span API docs
* Fix typo in API docs
* Include explicit labeled=True for scorer
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add failing test
* Partial fix for issue
This kind of works. The issue with token length mismatches is gone. The
problem is that when you get empty lists of encodings to compare, it
fails because the sizes are not the same, even though they're both zero:
(0, 3) vs (0,). Not sure why that happens...
* Short circuit on empties
* Remove spurious check
The check here isn't needed now the the short circuit is fixed.
* Update spacy/tests/pipeline/test_entity_linker.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Use "eg", not "example"
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Pipe name override in config: added check with warning, added removal of name override from config, extended tests.
* Pipoe name override in config: added pytest UserWarning.
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add v1 and v2 tests for tok2vec architectures
* textcat architectures are not "layers"
* test older textcat architectures
* test older parser architecture
* Add edit tree lemmatizer
Co-authored-by: Daniël de Kok <me@danieldk.eu>
* Hide edit tree lemmatizer labels
* Use relative imports
* Switch to single quotes in error message
* Type annotation fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Reformat edit_tree_lemmatizer with black
* EditTreeLemmatizer.predict: take Iterable
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Validate edit trees during deserialization
This change also changes the serialized representation. Rather than
mirroring the deep C structure, we use a simple flat union of the match
and substitution node types.
* Move edit_trees to _edit_tree_internals
* Fix invalid edit tree format error message
* edit_tree_lemmatizer: remove outdated TODO comment
* Rename factory name to trainable_lemmatizer
* Ignore type instead of casting truths to List[Union[Ints1d, Floats2d, List[int], List[str]]] for thinc v8.0.14
* Switch to Tagger.v2
* Add documentation for EditTreeLemmatizer
* docs: Fix 3.2 -> 3.3 somewhere
* trainable_lemmatizer documentation fixes
* docs: EditTreeLemmatizer is in edit_tree_lemmatizer.py
Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Tagger: use unnormalized probabilities for inference
Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).
* Add spacy.Tagger.v2 with configurable normalization
Normalization of probabilities is disabled by default to improve
performance.
* Update documentation, models, and tests to spacy.Tagger.v2
* Move Tagger.v1 to spacy-legacy
* docs/architectures: run prettier
* Unnormalized softmax is now a Softmax_v2 option
* Require thinc 8.0.14 and spacy-legacy 3.0.9
* Add save_candidates attribute
* Change spancat api
* Add unit test
* reimplement method to produce a list of doc
* Add method to docs
* Add new version tag
* Add intended use to docstring
* prettier formatting
* Fix get_matching_ents
Not sure what happened here - the code prior to this commit simply does
not work. It's already covered by entity linker tests, which were
succeeding in the NEL PR, but couldn't possibly succeed on master.
* Fix test
Test was indented inside another test and so doesn't seem to have been
running properly.
* Partial fix of entity linker batching
* Add import
* Better name
* Add `use_gold_ents` option, docs
* Change to v2, create stub v1, update docs etc.
* Fix error type
Honestly no idea what the right type to use here is.
ConfigValidationError seems wrong. Maybe a NotImplementedError?
* Make mypy happy
* Add hacky fix for init issue
* Add legacy pipeline entity linker
* Fix references to class name
* Add __init__.py for legacy
* Attempted fix for loss issue
* Remove placeholder V1
* formatting
* slightly more interesting train data
* Handle batches with no usable examples
This adds a test for batches that have docs but not entities, and a
check in the component that detects such cases and skips the update step
as thought the batch were empty.
* Remove todo about data verification
Check for empty data was moved further up so this should be OK now - the
case in question shouldn't be possible.
* Fix gradient calculation
The model doesn't know which entities are not in the kb, so it generates
embeddings for the context of all of them.
However, the loss does know which entities aren't in the kb, and it
ignores them, as there's no sensible gradient.
This has the issue that the gradient will not be calculated for some of
the input embeddings, which causes a dimension mismatch in backprop.
That should have caused a clear error, but with numpyops it was causing
nans to happen, which is another problem that should be addressed
separately.
This commit changes the loss to give a zero gradient for entities not in
the kb.
* add failing test for v1 EL legacy architecture
* Add nasty but simple working check for legacy arch
* Clarify why init hack works the way it does
* Clarify use_gold_ents use case
* Fix use gold ents related handling
* Add tests for no gold ents and fix other tests
* Use aligned ents function (not working)
This doesn't actually work because the "aligned" ents are gold-only. But
if I have a different function that returns the intersection, *then*
this will work as desired.
* Use proper matching ent check
This changes the process when gold ents are not used so that the
intersection of ents in the pred and gold is used.
* Move get_matching_ents to Example
* Use model attribute to check for legacy arch
* Rename flag
* bump spacy-legacy to lower 3.0.9
Co-authored-by: svlandeg <svlandeg@github.com>
* Fix Scorer.score_cats for missing labels
* Add test case for Scorer.score_cats missing labels
* semantic nitpick
* black formatting
* adjust test to give different results depending on multi_label setting
* fix loss function according to whether or not missing values are supported
* add note to docs
* small fixes
* make mypy happy
* Update spacy/pipeline/textcat.py
Co-authored-by: Florian Cäsar <florian.caesar@pm.me>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* added ruler coe
* added error for none existing pattern
* changed error to warning
* changed error to warning
* added basic tests
* fixed place
* added test files
* went back to error
* went back to pattern error
* minor change to docs
* changed style
* changed doc
* changed error slightly
* added remove to phrasem api
* error key already existed
* phrase matcher match code to api
* blacked tests
* moved comments before expr
* corrected error no
* Update website/docs/api/entityruler.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/docs/api/entityruler.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Migrate regressions 1-1000
* Move serialize test to correct file
* Remove tests that won't work in v3
* Migrate regressions 1000-1500
Removed regression test 1250 because v3 doesn't support the old LEX
scheme anymore.
* Add missing imports in serializer tests
* Migrate tests 1500-2000
* Migrate regressions from 2000-2500
* Migrate regressions from 2501-3000
* Migrate regressions from 3000-3501
* Migrate regressions from 3501-4000
* Migrate regressions from 4001-4500
* Migrate regressions from 4501-5000
* Migrate regressions from 5001-5501
* Migrate regressions from 5501 to 7000
* Migrate regressions from 7001 to 8000
* Migrate remaining regression tests
* Fixing missing imports
* Update docs with new system [ci skip]
* Update CONTRIBUTING.md
- Fix formatting
- Update wording
* Remove lemmatizer tests in el lang
* Move a few tests into the general tokenizer
* Separate Doc and DocBin tests
* added error string
* added serialization test
* added more to if statements
* wrote file to tempdir
* added tempdir
* changed parameter a bit
* Update spacy/tests/pipeline/test_entity_ruler.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* 🚨 Ignore all existing Mypy errors
* 🏗 Add Mypy check to CI
* Add types-mock and types-requests as dev requirements
* Add additional type ignore directives
* Add types packages to dev-only list in reqs test
* Add types-dataclasses for python 3.6
* Add ignore to pretrain
* 🏷 Improve type annotation on `run_command` helper
The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.
* 🔧 Allow variable type redefinition in limited contexts
These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:
```python
def process(items: List[str]) -> None:
# 'items' has type List[str]
items = [item.split() for item in items]
# 'items' now has type List[List[str]]
...
```
This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`
These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.
* 🏷 Add type annotation to converters mapping
* 🚨 Fix Mypy error in convert CLI argument verification
* 🏷 Improve type annotation on `resolve_dot_names` helper
* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`
* 🏷 Add type annotations for more `Vocab` attributes
* 🏷 Add loose type annotation for gold data compilation
* 🏷 Improve `_format_labels` type annotation
* 🏷 Fix `get_lang_class` type annotation
* 🏷 Loosen return type of `Language.evaluate`
* 🏷 Don't accept `Scorer` in `handle_scores_per_type`
* 🏷 Add `string_to_list` overloads
* 🏷 Fix non-Optional command-line options
* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`
* ➕ Install `typing_extensions` in Python 3.8+
The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.
Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.
These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.
* 🏷 Improve type annotation for `Language.pipe`
These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.
Fixes#8772
* ➖ Don't install `typing-extensions` in Python 3.8+
After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉
These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.
* resolve mypy errors for Strict pydantic types
* refactor code to avoid missing return statement
* fix types of convert CLI command
* avoid list-set confustion in debug_data
* fix typo and formatting
* small fixes to avoid type ignores
* fix types in profile CLI command and make it more efficient
* type fixes in projects CLI
* put one ignore back
* type fixes for render
* fix render types - the sequel
* fix BaseDefault in language definitions
* fix type of noun_chunks iterator - yields tuple instead of span
* fix types in language-specific modules
* 🏷 Expand accepted inputs of `get_string_id`
`get_string_id` accepts either a string (in which case it returns its
ID) or an ID (in which case it immediately returns the ID). These
changes extend the type annotation of `get_string_id` to indicate that
it can accept either strings or IDs.
* 🏷 Handle override types in `combine_score_weights`
The `combine_score_weights` function allows users to pass an `overrides`
mapping to override data extracted from the `weights` argument. Since it
allows `Optional` dictionary values, the return value may also include
`Optional` dictionary values.
These changes update the type annotations for `combine_score_weights` to
reflect this fact.
* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`
* 🏷 Fix redefinition of `wandb_logger`
These changes fix the redefinition of `wandb_logger` by giving a
separate name to each `WandbLogger` version. For
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3`
as `wandb_logger` for now.
* more fixes for typing in language
* type fixes in model definitions
* 🏷 Annotate `_RandomWords.probs` as `NDArray`
* 🏷 Annotate `tok2vec` layers to help Mypy
* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6
Also remove an import that I forgot to move to the top of the module 😅
* more fixes for matchers and other pipeline components
* quick fix for entity linker
* fixing types for spancat, textcat, etc
* bugfix for tok2vec
* type annotations for scorer
* add runtime_checkable for Protocol
* type and import fixes in tests
* mypy fixes for training utilities
* few fixes in util
* fix import
* 🐵 Remove unused `# type: ignore` directives
* 🏷 Annotate `Language._components`
* 🏷 Annotate `spacy.pipeline.Pipe`
* add doc as property to span.pyi
* small fixes and cleanup
* explicit type annotations instead of via comment
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
* Add overwrite settings for more components
For pipeline components where it's relevant and not already implemented,
add an explicit `overwrite` setting that controls whether
`set_annotations` overwrites existing annotation.
For the `morphologizer`, add an additional setting `extend`, which
controls whether the existing features are preserved.
* +overwrite, +extend: overwrite values of existing features, add any new
features
* +overwrite, -extend: overwrite completely, removing any existing
features
* -overwrite, +extend: keep values of existing features, add any new
features
* -overwrite, -extend: do not modify the existing value if set
In all cases an unset value will be set by `set_annotations`.
Preserve current overwrite defaults:
* True: morphologizer, entity linker
* False: tagger, sentencizer, senter
* Add backwards compat overwrite settings
* Put empty line back
Removed by accident in last commit
* Set backwards-compatible defaults in __init__
Because the `TrainablePipe` serialization methods update `cfg`, there's
no straightforward way to detect whether models serialized with a
previous version are missing the overwrite settings.
It would be possible in the sentencizer due to its separate
serialization methods, however to keep the changes parallel, this also
sets the default in `__init__`.
* Remove traces
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* overfitting test on non-overlapping entities
* add failing overfitting test for overlapping entities
* failing test for list comprehension
* remove test that was put in separate PR
* bugfix
* cleanup
* test for error after Doc has been garbage collected
* warn about using a SpanGroup when the Doc has been garbage collected
* add warning to the docs
* rephrase slightly
* raise error instead of warning
* update
* move warning to doc property
* Add scorer option to components
Add an optional `scorer` parameter to all pipeline components. If a
scoring function is provided, it overrides the default scoring method
for that component.
* Add registered scorers for all components
* Add `scorers` registry
* Move all scoring methods outside of components as independent
functions and register
* Use the registered scoring methods as defaults in configs and inits
Additional:
* The scoring methods no longer have access to the full component, so
use settings from `cfg` as default scorer options to handle settings
such as `labels`, `threshold`, and `positive_label`
* The `attribute_ruler` scoring method no longer has access to the
patterns, so all scoring methods are called
* Bug fix: `spancat` scoring method is updated to set `allow_overlap` to
score overlapping spans correctly
* Update Russian lemmatizer to use direct score method
* Check type of cfg in Pipe.score
* Fix check
* Update spacy/pipeline/sentencizer.pyx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove validate_examples from scoring functions
* Use Pipe.labels instead of Pipe.cfg["labels"]
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add scores to output in spancat
This exposes the scores as an attribute on the SpanGroup. Includes a
basic test.
* Add basic doc note
* Vectorize score calcs
* Add "annotation format" section
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clean up doc section
* Ran prettier on docs
* Get arrays off the gpu before iterating over them
* Remove int() calls
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Raise an error for textcat with <2 labels
Raise an error if initializing a `textcat` component without at least
two labels.
* Add similar note to docs
* Update positive_label description in API docs
* Draft spancat model
* Add spancat model
* Add test for extract_spans
* Add extract_spans layer
* Upd extract_spans
* Add spancat model
* Add test for spancat model
* Upd spancat model
* Update spancat component
* Upd spancat
* Update spancat model
* Add quick spancat test
* Import SpanCategorizer
* Fix SpanCategorizer component
* Import SpanGroup
* Fix span extraction
* Fix import
* Fix import
* Upd model
* Update spancat models
* Add scoring, update defaults
* Update and add docs
* Fix type
* Update spacy/ml/extract_spans.py
* Auto-format and fix import
* Fix comment
* Fix type
* Fix type
* Update website/docs/api/spancategorizer.md
* Fix comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Better defense
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix labels list
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/ml/extract_spans.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Set annotations during update
* Set annotations in spancat
* fix imports in test
* Update spacy/pipeline/spancat.py
* replace MaxoutLogistic with LinearLogistic
* fix config
* various small fixes
* remove set_annotations parameter in update
* use our beloved tupley format with recent support for doc.spans
* bugfix to allow renaming the default span_key (scores weren't showing up)
* use different key in docs example
* change defaults to better-working parameters from project (WIP)
* register spacy.extract_spans.v1 for legacy purposes
* Upd dev version so can build wheel
* layers instead of architectures for smaller building blocks
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Include additional scores from overrides in combined score weights
* Parameterize spans key in scoring
Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.
* Use the (intentionally very short) default spans key `sc` in the
`SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
the key in the `getter` instead.
Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.
* Update website/docs/api/scorer.md
* Fix scorer for spans key containing underscore
* Increment version
* Add Spans to Evaluate CLI (#8439)
* Add Spans to Evaluate CLI
* Change to spans_key
* Add spans per_type output
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix spancat GPU issues (#8455)
* Fix GPU issues
* Require thinc >=8.0.6
* Switch to glorot_uniform_init
* Fix and test ngram suggester
* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>
* implement textcat resizing for TextCatCNN
* resizing textcat in-place
* simplify code
* ensure predictions for old textcat labels remain the same after resizing (WIP)
* fix for softmax
* store softmax as attr
* fix ensemble weight copy and cleanup
* restructure slightly
* adjust documentation, update tests and quickstart templates to use latest versions
* extend unit test slightly
* revert unnecessary edits
* fix typo
* ensemble architecture won't be resizable for now
* use resizable layer (WIP)
* revert using resizable layer
* resizable container while avoid shape inference trouble
* cleanup
* ensure model continues training after resizing
* use fill_b parameter
* use fill_defaults
* resize_layer callback
* format
* bump thinc to 8.0.4
* bump spacy-legacy to 3.0.6
* Show warning if entity_ruler runs without patterns
* Show warning if matcher runs without patterns
* fix wording
* unit test for warning once (WIP)
* warn W036 only once
* cleanup
* create filter_warning helper
* Don't add duplicate patterns (fix#8216)
* Refactor EntityRuler init
This simplifies the EntityRuler init code. This is helpful as prep for
allowing the EntityRuler to reset itself.
* Make EntityRuler.clear reset matchers
Includes a new test for this.
* Tidy PhraseMatcher instantiation
Since the attr can be None safely now, the guard if is no longer
required here.
Also renamed the `_validate` attr. Maybe it's not needed?
* Fix NER test
* Add test to make sure patterns aren't increasing
* Move test to regression tests
* Show warning if entity_ruler runs without patterns
* Show warning if matcher runs without patterns
* fix wording
* unit test for warning once (WIP)
* warn W036 only once
* cleanup
* create filter_warning helper
* unit test for pickling KB
* add pickling test for NEL
* KB to_bytes and from_bytes
* NEL to_bytes and from_bytes
* xfail pickle tests for now
* fix docs
* cleanup
* Add training option to set annotations on update
Add a `[training]` option called `set_annotations_on_update` to specify
a list of components for which the predicted annotations should be set
on `example.predicted` immediately after that component has been
updated. The predicted annotations can be accessed by later components
in the pipeline during the processing of the batch in the same `update`
call.
* Rename to annotates / annotating_components
* Add test for `annotating_components` when training from config
* Add documentation
* Set up CI for tests with GPU agent
* Update tests for enabled GPU
* Fix steps filename
* Add parallel build jobs as a setting
* Fix test requirements
* Fix install test requirements condition
* Fix pipeline models test
* Reset current ops in prefer/require testing
* Fix more tests
* Remove separate test_models test
* Fix regression 5551
* fix StaticVectors for GPU use
* fix vocab tests
* Fix regression test 5082
* Move azure steps to .github and reenable default pool jobs
* Consolidate/rename azure steps
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
* add multi-label textcat to menu
* add infobox on textcat API
* add info to v3 migration guide
* small edits
* further fixes in doc strings
* add infobox to textcat architectures
* add textcat_multilabel to overview of built-in components
* spelling
* fix unrelated warn msg
* Add textcat_multilabel to quickstart [ci skip]
* remove separate documentation page for multilabel_textcategorizer
* small edits
* positive label clarification
* avoid duplicating information in self.cfg and fix textcat.score
* fix multilabel textcat too
* revert threshold to storage in cfg
* revert threshold stuff for multi-textcat
Co-authored-by: Ines Montani <ines@ines.io>
* Add long_token_splitter component
Add a `long_token_splitter` component for use with transformer
pipelines. This component splits up long tokens like URLs into smaller
tokens. This is particularly relevant for pretrained pipelines with
`strided_spans`, since the user can't change the length of the span
`window` and may not wish to preprocess the input texts.
The `long_token_splitter` splits tokens that are at least
`long_token_length` tokens long into smaller tokens of `split_length`
size.
Notes:
* Since this is intended for use as the first component in a pipeline,
the token splitter does not try to preserve any token annotation.
* API docs to come when the API is stable.
* Adjust API, add test
* Fix name in factory
* Handle unset token.morph in Morphologizer
Handle unset `token.morph` in `Morphologizer.initialize` and
`Morphologizer.get_loss`. If both `token.morph` and `token.pos` are
unset, treat the annotation as missing rather than empty.
* Add token.has_morph()