Commit Graph

85 Commits

Author SHA1 Message Date
adrianeboyd
b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani
16c2522791 Merge branch 'master' into develop 2019-09-14 16:42:01 +02:00
adrianeboyd
6942a6a69b Extend default punct for sentencizer (#4290)
Most of these characters are for languages / writing systems that aren't
supported by spacy, but I don't think it causes problems to include
them. In the UD evals, Hindi and Urdu improve a lot as expected (from
0-10% to 70-80%) and Persian improves a little (90% to 96%). Tamil
improves in combination with #4288.

The punctuation list is converted to a set internally because of its
increased length.

Sentence final punctuation generated with:

```
unichars -gas '[\p{Sentence_Break=STerm}\p{Sentence_Break=ATerm}]' '\p{Terminal_Punctuation}'
```

See: https://stackoverflow.com/a/9508766/461847

Fixes #4269.
2019-09-14 15:25:48 +02:00
Ines Montani
27106d6528 Merge branch 'master' into develop 2019-09-13 17:07:17 +02:00
Sofie Van Landeghem
2ae5db580e dim bugfix when incl_prior is False (#4285) 2019-09-13 16:30:05 +02:00
Ines Montani
3c3658ef9f Merge branch 'master' into develop 2019-09-12 18:03:01 +02:00
Ines Montani
228bbf506d Improve label properties on pipes 2019-09-12 18:02:44 +02:00
Ines Montani
655b434553 Merge branch 'master' into develop 2019-09-12 11:39:18 +02:00
tamuhey
71909cdf22 Fix iss4278 (#4279)
* fix: len(tuple) == 2

* (#4278) add fail test

* add contributor's aggreement
2019-09-12 10:44:49 +02:00
Ines Montani
8ebc3711dc Fix bug in Parser.labels and add test (#4275) 2019-09-11 18:29:35 +02:00
Matthew Honnibal
c308cf3e3e
Merge branch 'master' into feature/lemmatizer 2019-08-25 13:52:27 +02:00
Matthew Honnibal
bb911e5f4e Fix #3830: 'subtok' label being added even if learn_tokens=False (#4188)
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Matthew Honnibal
bcd08f20af Merge changes from master 2019-08-21 14:18:52 +02:00
Ines Montani
f65e36925d Fix absolute imports and avoid importing from cli 2019-08-20 15:08:59 +02:00
Sofie Van Landeghem
0ba1b5eebc CLI scripts for entity linking (wikipedia & generic) (#4091)
* document token ent_kb_id

* document span kb_id

* update pipeline documentation

* prior and context weights as bool's instead

* entitylinker api documentation

* drop for both models

* finish entitylinker documentation

* small fixes

* documentation for KB

* candidate documentation

* links to api pages in code

* small fix

* frequency examples as counts for consistency

* consistent documentation about tensors returned by predict

* add entity linking to usage 101

* add entity linking infobox and KB section to 101

* entity-linking in linguistic features

* small typo corrections

* training example and docs for entity_linker

* predefined nlp and kb

* revert back to similarity encodings for simplicity (for now)

* set prior probabilities to 0 when excluded

* code clean up

* bugfix: deleting kb ID from tokens when entities were removed

* refactor train el example to use either model or vocab

* pretrain_kb example for example kb generation

* add to training docs for KB + EL example scripts

* small fixes

* error numbering

* ensure the language of vocab and nlp stay consistent across serialization

* equality with =

* avoid conflict in errors file

* add error 151

* final adjustements to the train scripts - consistency

* update of goldparse documentation

* small corrections

* push commit

* turn kb_creator into CLI script (wip)

* proper parameters for training entity vectors

* wikidata pipeline split up into two executable scripts

* remove context_width

* move wikidata scripts in bin directory, remove old dummy script

* refine KB script with logs and preprocessing options

* small edits

* small improvements to logging of EL CLI script
2019-08-13 15:38:59 +02:00
Matthew Honnibal
4632c597e7 Fix Pipe base class 2019-08-01 17:29:01 +02:00
Sofie Van Landeghem
7de3b129ab Resolve edge case when calling textcat.predict with empty doc (#4035)
* resolve edge case where no doc has tokens when calling textcat.predict

* more explicit value test
2019-07-30 14:58:01 +02:00
Matthew Honnibal
06eb428ed1 Make pipe base class a bit less presumptuous 2019-07-28 17:56:11 +02:00
Matthew Honnibal
16b5144095 Don't raise NotImplemented in Pipe.update 2019-07-28 17:54:11 +02:00
Matthew Honnibal
73e095923f 💫 Improve error message when model.from_bytes() dies (#4014)
* Improve error message when model.from_bytes() dies

When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,

e.g. "AttributeError: FunctionLayer has no attribute G"

This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.

I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>


Co-authored-by: Ines Montani <ines@ines.io>
2019-07-24 11:27:34 +02:00
svlandeg
4e7ec1ed31 return fix 2019-07-23 14:23:58 +02:00
svlandeg
400ff342cf replace assert's with custom error messages 2019-07-23 11:52:48 +02:00
svlandeg
20389e4553 format and bugfix 2019-07-22 15:08:17 +02:00
svlandeg
41fb5204ba output tensors as part of predict 2019-07-19 14:47:36 +02:00
svlandeg
21176517a7 have gold.links correspond exactly to doc.ents 2019-07-19 12:36:15 +02:00
svlandeg
e1213eaf6a use original gold object in get_loss function 2019-07-18 13:35:10 +02:00
svlandeg
ec55d2fccd filter training data beforehand (+black formatting) 2019-07-18 10:22:24 +02:00
svlandeg
a63d15a142 code cleanup 2019-07-15 17:36:43 +02:00
svlandeg
60f299374f set default context width 2019-07-15 12:03:09 +02:00
Sofie Van Landeghem
c4c21cb428 more friendly textcat errors (#3946)
* more friendly textcat errors with require_model and require_labels

* update thinc version with recent bugfix
2019-07-10 19:39:38 +02:00
Ines Montani
f2ea3e3ea2
Merge branch 'master' into feature/nel-wiki 2019-07-09 21:57:47 +02:00
Ines Montani
547464609d Remove merge_subtokens from parser postprocessing for now 2019-07-09 21:50:30 +02:00
svlandeg
668b17ea4a deuglify kb deserializer 2019-07-03 15:00:42 +02:00
svlandeg
8840d4b1b3 fix for context encoder optimizer 2019-07-03 13:35:36 +02:00
svlandeg
2d2dea9924 experiment with adding NER types to the feature vector 2019-06-29 14:52:36 +02:00
svlandeg
c664f58246 adding prior probability as feature in the model 2019-06-28 16:22:58 +02:00
svlandeg
68a0662019 context encoder with Tok2Vec + linking model instead of cosine 2019-06-28 08:29:31 +02:00
Ines Montani
37f744ca00 Auto-format [ci skip] 2019-06-26 14:48:09 +02:00
svlandeg
1de61f68d6 improve speed of prediction loop 2019-06-26 13:53:10 +02:00
svlandeg
58a5b40ef6 clean up duplicate code 2019-06-24 15:19:58 +02:00
svlandeg
b58bace84b small fixes 2019-06-24 10:55:04 +02:00
svlandeg
cc9ae28a52 custom error and warning messages 2019-06-19 12:35:26 +02:00
svlandeg
791327e3c5 Merge remote-tracking branch 'upstream/master' into feature/nel-wiki 2019-06-19 09:44:05 +02:00
svlandeg
a31648d28b further code cleanup 2019-06-19 09:15:43 +02:00
svlandeg
478305cd3f small tweaks and documentation 2019-06-18 18:38:09 +02:00
svlandeg
0d177c1146 clean up code, remove old code, move to bin 2019-06-18 13:20:40 +02:00
svlandeg
ffae7d3555 sentence encoder only (removing article/mention encoder) 2019-06-18 00:05:47 +02:00
svlandeg
b312f2d0e7 redo training data to be independent of KB and entity-level instead of doc-level 2019-06-14 15:55:26 +02:00
svlandeg
78dd3e11da write entity linking pipe to file and keep vocab consistent between kb and nlp 2019-06-13 16:25:39 +02:00
svlandeg
b12001f368 small fixes 2019-06-12 22:05:53 +02:00