* Support custom token/lexeme attribute for vectors
* Fix imports
* Back off to ORTH without Vectors.attr
* Fallback if vectors.attr doesn't exist
* Update docs
* Use isort with Black profile
* isort all the things
* Fix import cycles as a result of import sorting
* Add DOCBIN_ALL_ATTRS type definition
* Add isort to requirements
* Remove isort from build dependencies check
* Typo
* Require that all SpanGroup spans are from the current doc
The restriction on only adding spans from the current doc were already
implemented for all operations except for `SpanGroup.__init__`.
Initialize copied spans for `SpanGroup.copy` with `Doc.char_span` in
order to validate the character offsets and to make it possible to copy
spans between documents with differing tokenization. Currently there is
no validation that the document texts are identical, but the span char
offsets must be valid spans in the target doc, which prevents you from
ending up with completely invalid spans.
* Undo change in test_beam_overfitting_IO
* Add span_id to Span.char_span, update Doc/Span.char_span docs
`Span.char_span(id=)` should be removed in the future.
* Also use Union[int, str] in Doc docstring
* Don't pass mem pool to new lexeme function
* Remove unused mem from function args
Two methods calling _new_lexeme, get and get_by_orth, took mem arguments
just to call the internal method. That's no longer necessary, so this
cleans it up.
* prettier formatting
* Remove more unused mem args
* Init
* Fix return type for mypy
* adjust types and improve setting new attributes
* Add underscore changes to json conversion
* Add test and underscore changes to from_docs
* add underscore changes and test to span.to_doc
* update return values
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add types to function
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* adjust formatting
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* shorten return type
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* add helper function to improve readability
* Improve code and add comments
* rerun azure tests
* Fix tests for json conversion
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Convert all individual values explicitly to uint64 for array-based doc representations
* Temporarily test with latest numpy v1.24.0rc
* Remove unnecessary conversion from attr_t
* Reduce number of individual casts
* Convert specifically from int32 to uint64
* Revert "Temporarily test with latest numpy v1.24.0rc"
This reverts commit eb0e3c5006.
* Also use int32 in tests
* remove sentiment attribute
* remove sentiment from docs
* add test for backwards compatibility
* replace from_disk with from_bytes
* Fix docs and format file
* Fix formatting
* Fix multiple extensions and character offset
* Rename token_start/end to start/end
* Refactor Doc.from_json based on review
* Iterate over user_data items
* Only add non-empty underscore entries
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Remove side effects from Doc.__init__()
* Changes based on review comment
* Readd test
* Change interface of Doc.__init__()
* Simplify test
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update doc.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Store activations in Doc when `store_activations` is enabled
This change adds the new `activations` attribute to `Doc`. This
attribute can be used by trainable pipes to store their activations,
probabilities, and guesses for downstream users.
As an example, this change modifies the `tagger` and `senter` pipes to
add an `store_activations` option. When this option is enabled, the
probabilities and guesses are stored in `set_annotations`.
* Change type of `store_activations` to `Union[bool, List[str]]`
When the value is:
- A bool: all activations are stored when set to `True`.
- A List[str]: the activations named in the list are stored
* Formatting fixes in Tagger
* Support store_activations in spancat and morphologizer
* Make Doc.activations type visible to MyPy
* textcat/textcat_multilabel: add store_activations option
* trainable_lemmatizer/entity_linker: add store_activations option
* parser/ner: do not currently support returning activations
* Extend tagger and senter tests
So that they, like the other tests, also check that we get no
activations if no activations were requested.
* Document `Doc.activations` and `store_activations` in the relevant pipes
* Start errors/warnings at higher numbers to avoid merge conflicts
Between the master and v4 branches.
* Add `store_activations` to docstrings.
* Replace store_activations setter by set_store_activations method
Setters that take a different type than what the getter returns are still
problematic for MyPy. Replace the setter by a method, so that type inference
works everywhere.
* Use dict comprehension suggested by @svlandeg
* Revert "Use dict comprehension suggested by @svlandeg"
This reverts commit 6e7b958f70.
* EntityLinker: add type annotations to _add_activations
* _store_activations: make kwarg-only, remove doc_scores_lens arg
* set_annotations: add type annotations
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TextCat.predict: return dict
* Make the `TrainablePipe.store_activations` property a bool
This means that we can also bring back `store_activations` setter.
* Remove `TrainablePipe.activations`
We do not need to enumerate the activations anymore since `store_activations` is
`bool`.
* Add type annotations for activations in predict/set_annotations
* Rename `TrainablePipe.store_activations` to `save_activations`
* Error E1400 is not used anymore
This error was used when activations were still `Union[bool, List[str]]`.
* Change wording in API docs after store -> save change
* docs: tag (save_)activations as new in spaCy 4.0
* Fix copied line in morphologizer activations test
* Don't train in any test_save_activations test
* Rename activations
- "probs" -> "probabilities"
- "guesses" -> "label_ids", except in the edit tree lemmatizer, where
"guesses" -> "tree_ids".
* Remove unused W400 warning.
This warning was used when we still allowed the user to specify
which activations to save.
* Formatting fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Replace "kb_ids" by a constant
* spancat: replace a cast by an assertion
* Fix EOF spacing
* Fix comments in test_save_activations tests
* Do not set RNG seed in activation saving tests
* Revert "spancat: replace a cast by an assertion"
This reverts commit 0bd5730d16.
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Consolidate and freeze symbols
Instead of having symbol values defined in three potentially conflicting
places (`spacy.attrs`, `spacy.parts_of_speech`, `spacy.symbols`), define
all symbols in `spacy.symbols` and reference those values in
`spacy.attrs` and `spacy.parts_of_speech`.
Remove deprecated and placeholder symbols from `spacy.attrs.IDS`.
Make `spacy.attrs.NAMES` and `spacy.symbols.NAMES` reverse dicts rather
than lists in order to support future use of hash values in `attr_id_t`.
Minor changes:
* Use `uint64_t` for attrs in `Doc.to_array` to support future use of
hash values
* Remove unneeded attrs filter for error message in `Doc.to_array`
* Remove unused attr `SENT_END`
* Handle dynamic size of attr_id_t in Doc.to_array
* Undo added warnings
* Refactor to make Doc.to_array more similar to Doc.from_array
* Improve refactoring
* Add token and span custom attributes to to_json()
* Change logic for to_json
* Add functionality to from_json
* Small adjustments
* Move token/span attributes to new dict key
* Fix test
* Fix the same test but much better
* Add backwards compatibility tests and adjust logic
* Add test to check if attributes not set in underscore are not saved in the json
* Add tests for json compatibility
* Adjust test names
* Fix tests and clean up code
* Fix assert json tests
* small adjustment
* adjust naming and code readability
* Adjust naming, added more tests and changed logic
* Fix typo
* Adjust errors, naming, and small test optimization
* Fix byte tests
* Fix bytes tests
* Change naming and json structure
* update schema
* Update spacy/schemas.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/tokens/doc.pyx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/tokens/doc.pyx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/schemas.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update schema for underscore attributes
* Adjust underscore schema
* adjust schema tests
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Map `Span.id` to `Token.ent_id` in all cases when setting `Doc.ents`
* Reset `Token.ent_id` and `Token.ent_kb_id` when setting `Doc.ents`
* Make `Span.ent_id` an alias of `Span.id` rather than a read-only view
of the root token's `ent_id` annotation
Distinguish between vectors that are 0 vs. missing vectors when warning
about missing vectors.
Update `Doc.has_vector` to match `Span.has_vector` and
`Token.has_vector` for cases where the vocab has vectors but none of the
tokens in the container have vectors.
* Add SpanRuler component
Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.
* Update spacy/pipeline/span_ruler.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix cast
* Add self.key property
* Use number of patterns as length
* Remove patterns kwarg from init
* Update spacy/tests/pipeline/test_span_ruler.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add options for spans filter and setting to ents
* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.
* Update and generalize tests
* Add test for setting doc.ents, fix key property type
* Fix typing
* Allow independent doc.spans and doc.ents
* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
* Use `util.filter_spans` by default as `ents_filter`.
* Use a custom warning if the filter does not work for `doc.ents`.
* Enable use of SpanC.id in Span
* Support id in SpanRuler as Span.id
* Update types
* `id` can only be provided as string (already by `PatternType`
definition)
* Update all uses of Span.id/ent_id in Doc
* Rename Span id kwarg to span_id
* Update types and docs
* Add ents filter to mimic EntityRuler overwrite_ents
* Refactor `ents_filter` to take `entities, spans` args for more
filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
(`spacy.first_longest_spans_filter.v1`) to take any number of
`Iterable[Span]` objects as args so it can be used for spans filter
or ents filter
* Implement future entity ruler as span ruler
Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
customized. (Necessary for the same sorting/filtering as in
`EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
`preserve_existing_ents_filter` to support
`EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
`entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
properties.
Additional changes:
* Move all config settings to top-level attributes to avoid duplicating
settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
casting.)
* Format
* Fix filter make method name
* Refactor to use same error for removing by label or ID
* Also provide existing spans to spans filter
* Support ids property
* Remove token_patterns and phrase_patterns
* Update docstrings
* Add span ruler docs
* Fix types
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Move sorting into filters
* Check for all tokens in seen tokens in entity ruler filters
* Remove registered sort key
* Set Token.ent_id in a backwards-compatible way in Doc.set_ents
* Remove sort options from API docs
* Update docstrings
* Rename entity ruler filters
* Fix and parameterize scoring
* Add id to Span API docs
* Fix typo in API docs
* Include explicit labeled=True for scorer
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* remove duplicate line
* add sent start/end token attributes to the docs
* let has_annotation work with IS_SENT_END
* elif instead of if
* add has_annotation test for sent attributes
* fix typo
* remove duplicate is_sent_start entry in docs
* Use Vectors.shape rather than Vectors.data.shape
* Use Vectors.size rather than Vectors.data.size
* Add Vectors.to_ops to move data between different ops
* Add documentation for Vector.to_ops
* Clarify error when words are of wrong type
See #9437
* Update docs
* Use try/except
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Add support for fasttext-bloom hash-only vectors
Overview:
* Extend `Vectors` to have two modes: `default` and `ngram`
* `default` is the default mode and equivalent to the current
`Vectors`
* `ngram` supports the hash-only ngram tables from `fasttext-bloom`
* Extend `spacy.StaticVectors.v2` to handle both modes with no changes
for `default` vectors
* Extend `spacy init vectors` to support ngram tables
The `ngram` mode **only** supports vector tables produced by this
fork of fastText, which adds an option to represent all vectors using
only the ngram buckets table and which uses the exact same ngram
generation algorithm and hash function (`MurmurHash3_x64_128`).
`fasttext-bloom` produces an additional `.hashvec` table, which can be
loaded by `spacy init vectors --fasttext-bloom-vectors`.
https://github.com/adrianeboyd/fastText/tree/feature/bloom
Implementation details:
* `Vectors` now includes the `StringStore` as `Vectors.strings` so that
the API can stay consistent for both `default` (which can look up from
`str` or `int`) and `ngram` (which requires `str` to calculate the
ngrams).
* In ngram mode `Vectors` uses a default `Vectors` object as a cache
since the ngram vectors lookups are relatively expensive.
* The default cache size is the same size as the provided ngram vector
table.
* Once the cache is full, no more entries are added. The user is
responsible for managing the cache in cases where the initial
documents are not representative of the texts.
* The cache can be resized by setting `Vectors.ngram_cache_size` or
cleared with `vectors._ngram_cache.clear()`.
* The API ends up a bit split between methods for `default` and for
`ngram`, so functions that only make sense for `default` or `ngram`
include warnings with custom messages suggesting alternatives where
possible.
* `Vocab.vectors` becomes a property so that the string stores can be
synced when assigning vectors to a vocab.
* `Vectors` serializes its own config settings as `vectors.cfg`.
* The `Vectors` serialization methods have added support for `exclude`
so that the `Vocab` can exclude the `Vectors` strings while serializing.
Removed:
* The `minn` and `maxn` options and related code from
`Vocab.get_vector`, which does not work in a meaningful way for default
vector tables.
* The unused `GlobalRegistry` in `Vectors`.
* Refactor to use reduce_mean
Refactor to use reduce_mean and remove the ngram vectors cache.
* Rename to floret
* Rename to floret in error messages
* Use --vectors-mode in CLI, vector init
* Fix vectors mode in init
* Remove unused var
* Minor API and docstrings adjustments
* Rename `--vectors-mode` to `--mode` in `init vectors` CLI
* Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support
both modes.
* Minor updates to Vectors docstrings.
* Update API docs for Vectors and init vectors CLI
* Update types for StaticVectors
* 🚨 Ignore all existing Mypy errors
* 🏗 Add Mypy check to CI
* Add types-mock and types-requests as dev requirements
* Add additional type ignore directives
* Add types packages to dev-only list in reqs test
* Add types-dataclasses for python 3.6
* Add ignore to pretrain
* 🏷 Improve type annotation on `run_command` helper
The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.
* 🔧 Allow variable type redefinition in limited contexts
These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:
```python
def process(items: List[str]) -> None:
# 'items' has type List[str]
items = [item.split() for item in items]
# 'items' now has type List[List[str]]
...
```
This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`
These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.
* 🏷 Add type annotation to converters mapping
* 🚨 Fix Mypy error in convert CLI argument verification
* 🏷 Improve type annotation on `resolve_dot_names` helper
* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`
* 🏷 Add type annotations for more `Vocab` attributes
* 🏷 Add loose type annotation for gold data compilation
* 🏷 Improve `_format_labels` type annotation
* 🏷 Fix `get_lang_class` type annotation
* 🏷 Loosen return type of `Language.evaluate`
* 🏷 Don't accept `Scorer` in `handle_scores_per_type`
* 🏷 Add `string_to_list` overloads
* 🏷 Fix non-Optional command-line options
* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`
* ➕ Install `typing_extensions` in Python 3.8+
The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.
Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.
These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.
* 🏷 Improve type annotation for `Language.pipe`
These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.
Fixes#8772
* ➖ Don't install `typing-extensions` in Python 3.8+
After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉
These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.
* resolve mypy errors for Strict pydantic types
* refactor code to avoid missing return statement
* fix types of convert CLI command
* avoid list-set confustion in debug_data
* fix typo and formatting
* small fixes to avoid type ignores
* fix types in profile CLI command and make it more efficient
* type fixes in projects CLI
* put one ignore back
* type fixes for render
* fix render types - the sequel
* fix BaseDefault in language definitions
* fix type of noun_chunks iterator - yields tuple instead of span
* fix types in language-specific modules
* 🏷 Expand accepted inputs of `get_string_id`
`get_string_id` accepts either a string (in which case it returns its
ID) or an ID (in which case it immediately returns the ID). These
changes extend the type annotation of `get_string_id` to indicate that
it can accept either strings or IDs.
* 🏷 Handle override types in `combine_score_weights`
The `combine_score_weights` function allows users to pass an `overrides`
mapping to override data extracted from the `weights` argument. Since it
allows `Optional` dictionary values, the return value may also include
`Optional` dictionary values.
These changes update the type annotations for `combine_score_weights` to
reflect this fact.
* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`
* 🏷 Fix redefinition of `wandb_logger`
These changes fix the redefinition of `wandb_logger` by giving a
separate name to each `WandbLogger` version. For
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3`
as `wandb_logger` for now.
* more fixes for typing in language
* type fixes in model definitions
* 🏷 Annotate `_RandomWords.probs` as `NDArray`
* 🏷 Annotate `tok2vec` layers to help Mypy
* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6
Also remove an import that I forgot to move to the top of the module 😅
* more fixes for matchers and other pipeline components
* quick fix for entity linker
* fixing types for spancat, textcat, etc
* bugfix for tok2vec
* type annotations for scorer
* add runtime_checkable for Protocol
* type and import fixes in tests
* mypy fixes for training utilities
* few fixes in util
* fix import
* 🐵 Remove unused `# type: ignore` directives
* 🏷 Annotate `Language._components`
* 🏷 Annotate `spacy.pipeline.Pipe`
* add doc as property to span.pyi
* small fixes and cleanup
* explicit type annotations instead of via comment
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>