Commit Graph

42 Commits

Author SHA1 Message Date
Sofie Van Landeghem
0d94737857
Feature toggle_pipes (#5378)
* make disable_pipes deprecated in favour of the new toggle_pipes

* rewrite disable_pipes statements

* update documentation

* remove bin/wiki_entity_linking folder

* one more fix

* remove deprecated link to documentation

* few more doc fixes

* add note about name change to the docs

* restore original disable_pipes

* small fixes

* fix typo

* fix error number to W096

* rename to select_pipes

* also make changes to the documentation

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-18 22:27:10 +02:00
Sofie Van Landeghem
311133e579
Train textcat with config (#5143)
* bring back default build_text_classifier method

* remove _set_dims_ hack in favor of proper dim inference

* add tok2vec initialize to unit test

* small fixes

* add unit test for various textcat config settings

* logistic output layer does not have nO

* fix window_size setting

* proper fix

* fix W initialization

* Update textcat training example

* Use ml_datasets
* Convert training data to `Example` format
* Use `n_texts` to set proportionate dev size

* fix _init renaming on latest thinc

* avoid setting a non-existing dim

* update to thinc==8.0.0a2

* add BOW and CNN defaults for easy testing

* various experiments with train_textcat script, fix softmax activation in textcat bow

* allow textcat train script to work on other datasets as well

* have dataset as a parameter

* train textcat from config, with example config

* add config for training textcat

* formatting

* fix exclusive_classes

* fixing BOW for GPU

* bump thinc to 8.0.0a3 (not published yet so CI will fail)

* add in link_vectors_to_models which got deleted

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2020-03-29 19:40:36 +02:00
Sofie Van Landeghem
06f0a8daa0
Default settings to configurations (#4995)
* fix grad_clip naming

* cleaning up pretrained_vectors out of cfg

* further refactoring Model init's

* move Model building out of pipes

* further refactor to require a model config when creating a pipe

* small fixes

* making cfg in nn_parser more consistent

* fixing nr_class for parser

* fixing nn_parser's nO

* fix printing of loss

* architectures in own file per type, consistent naming

* convenience methods default_tagger_config and default_tok2vec_config

* let create_pipe access default config if available for that component

* default_parser_config

* move defaults to separate folder

* allow reading nlp from package or dir with argument 'name'

* architecture spacy.VocabVectors.v1 to read static vectors from file

* cleanup

* default configs for nel, textcat, morphologizer, tensorizer

* fix imports

* fixing unit tests

* fixes and clean up

* fixing defaults, nO, fix unit tests

* restore parser IO

* fix IO

* 'fix' serialization test

* add *.cfg to manifest

* fix example configs with additional arguments

* replace Morpohologizer with Tagger

* add IO bit when testing overfitting of tagger (currently failing)

* fix IO - don't initialize when reading from disk

* expand overfitting tests to also check IO goes OK

* remove dropout from HashEmbed to fix Tagger performance

* add defaults for sentrec

* update thinc

* always pass a Model instance to a Pipe

* fix piped_added statement

* remove obsolete W029

* remove obsolete errors

* restore byte checking tests (work again)

* clean up test

* further test cleanup

* convert from config to Model in create_pipe

* bring back error when component is not initialized

* cleanup

* remove calls for nlp2.begin_training

* use thinc.api in imports

* allow setting charembed's nM and nC

* fix for hardcoded nM/nC + unit test

* formatting fixes

* trigger build
2020-02-27 18:42:27 +01:00
Ines Montani
de11ea753a Merge branch 'master' into develop 2020-02-18 14:47:23 +01:00
Sofie Van Landeghem
569cc98982
Update spaCy for thinc 8.0.0 (#4920)
* Add load_from_config function

* Add train_from_config script

* Merge configs and expose via spacy.config

* Fix script

* Suggest create_evaluation_callback

* Hard-code for NER

* Fix errors

* Register command

* Add TODO

* Update train-from-config todos

* Fix imports

* Allow delayed setting of parser model nr_class

* Get train-from-config working

* Tidy up and fix scores and printing

* Hide traceback if cancelled

* Fix weighted score formatting

* Fix score formatting

* Make output_path optional

* Add Tok2Vec component

* Tidy up and add tok2vec_tensors

* Add option to copy docs in nlp.update

* Copy docs in nlp.update

* Adjust nlp.update() for set_annotations

* Don't shuffle pipes in nlp.update, decruft

* Support set_annotations arg in component update

* Support set_annotations in parser update

* Add get_gradients method

* Add get_gradients to parser

* Update errors.py

* Fix problems caused by merge

* Add _link_components method in nlp

* Add concept of 'listeners' and ControlledModel

* Support optional attributes arg in ControlledModel

* Try having tok2vec component in pipeline

* Fix tok2vec component

* Fix config

* Fix tok2vec

* Update for Example

* Update for Example

* Update config

* Add eg2doc util

* Update and add schemas/types

* Update schemas

* Fix nlp.update

* Fix tagger

* Remove hacks from train-from-config

* Remove hard-coded config str

* Calculate loss in tok2vec component

* Tidy up and use function signatures instead of models

* Support union types for registry models

* Minor cleaning in Language.update

* Make ControlledModel specifically Tok2VecListener

* Fix train_from_config

* Fix tok2vec

* Tidy up

* Add function for bilstm tok2vec

* Fix type

* Fix syntax

* Fix pytorch optimizer

* Add example configs

* Update for thinc describe changes

* Update for Thinc changes

* Update for dropout/sgd changes

* Update for dropout/sgd changes

* Unhack gradient update

* Work on refactoring _ml

* Remove _ml.py module

* WIP upgrade cli scripts for thinc

* Move some _ml stuff to util

* Import link_vectors from util

* Update train_from_config

* Import from util

* Import from util

* Temporarily add ml.component_models module

* Move ml methods

* Move typedefs

* Update load vectors

* Update gitignore

* Move imports

* Add PrecomputableAffine

* Fix imports

* Fix imports

* Fix imports

* Fix missing imports

* Update CLI scripts

* Update spacy.language

* Add stubs for building the models

* Update model definition

* Update create_default_optimizer

* Fix import

* Fix comment

* Update imports in tests

* Update imports in spacy.cli

* Fix import

* fix obsolete thinc imports

* update srsly pin

* from thinc to ml_datasets for example data such as imdb

* update ml_datasets pin

* using STATE.vectors

* small fix

* fix Sentencizer.pipe

* black formatting

* rename Affine to Linear as in thinc

* set validate explicitely to True

* rename with_square_sequences to with_list2padded

* rename with_flatten to with_list2array

* chaining layernorm

* small fixes

* revert Optimizer import

* build_nel_encoder with new thinc style

* fixes using model's get and set methods

* Tok2Vec in component models, various fixes

* fix up legacy tok2vec code

* add model initialize calls

* add in build_tagger_model

* small fixes

* setting model dims

* fixes for ParserModel

* various small fixes

* initialize thinc Models

* fixes

* consistent naming of window_size

* fixes, removing set_dropout

* work around Iterable issue

* remove legacy tok2vec

* util fix

* fix forward function of tok2vec listener

* more fixes

* trying to fix PrecomputableAffine (not succesful yet)

* alloc instead of allocate

* add morphologizer

* rename residual

* rename fixes

* Fix predict function

* Update parser and parser model

* fixing few more tests

* Fix precomputable affine

* Update component model

* Update parser model

* Move backprop padding to own function, for test

* Update test

* Fix p. affine

* Update NEL

* build_bow_text_classifier and extract_ngrams

* Fix parser init

* Fix test add label

* add build_simple_cnn_text_classifier

* Fix parser init

* Set gpu off by default in example

* Fix tok2vec listener

* Fix parser model

* Small fixes

* small fix for PyTorchLSTM parameters

* revert my_compounding hack (iterable fixed now)

* fix biLSTM

* Fix uniqued

* PyTorchRNNWrapper fix

* small fixes

* use helper function to calculate cosine loss

* small fixes for build_simple_cnn_text_classifier

* putting dropout default at 0.0 to ensure the layer gets built

* using thinc util's set_dropout_rate

* moving layer normalization inside of maxout definition to optimize dropout

* temp debugging in NEL

* fixed NEL model by using init defaults !

* fixing after set_dropout_rate refactor

* proper fix

* fix test_update_doc after refactoring optimizers in thinc

* Add CharacterEmbed layer

* Construct tagger Model

* Add missing import

* Remove unused stuff

* Work on textcat

* fix test (again :)) after optimizer refactor

* fixes to allow reading Tagger from_disk without overwriting dimensions

* don't build the tok2vec prematuraly

* fix CharachterEmbed init

* CharacterEmbed fixes

* Fix CharacterEmbed architecture

* fix imports

* renames from latest thinc update

* one more rename

* add initialize calls where appropriate

* fix parser initialization

* Update Thinc version

* Fix errors, auto-format and tidy up imports

* Fix validation

* fix if bias is cupy array

* revert for now

* ensure it's a numpy array before running bp in ParserStepModel

* no reason to call require_gpu twice

* use CupyOps.to_numpy instead of cupy directly

* fix initialize of ParserModel

* remove unnecessary import

* fixes for CosineDistance

* fix device renaming

* use refactored loss functions (Thinc PR 251)

* overfitting test for tagger

* experimental settings for the tagger: avoid zero-init and subword normalization

* clean up tagger overfitting test

* use previous default value for nP

* remove toy config

* bringing layernorm back (had a bug - fixed in thinc)

* revert setting nP explicitly

* remove setting default in constructor

* restore values as they used to be

* add overfitting test for NER

* add overfitting test for dep parser

* add overfitting test for textcat

* fixing init for linear (previously affine)

* larger eps window for textcat

* ensure doc is not None

* Require newer thinc

* Make float check vaguer

* Slop the textcat overfit test more

* Fix textcat test

* Fix exclusive classes for textcat

* fix after renaming of alloc methods

* fixing renames and mandatory arguments (staticvectors WIP)

* upgrade to thinc==8.0.0.dev3

* refer to vocab.vectors directly instead of its name

* rename alpha to learn_rate

* adding hashembed and staticvectors dropout

* upgrade to thinc 8.0.0.dev4

* add name back to avoid warning W020

* thinc dev4

* update srsly

* using thinc 8.0.0a0 !

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 17:06:46 +01:00
Sofie Van Landeghem
fbfc418745 run normal textcat train script with transformers (#4834)
* keep trf tok2vec and wordpiecer components during update

* also support transformer models for other example scripts
2020-01-16 02:01:23 +01:00
Sofie Van Landeghem
e48a09df4e Example class for training data (#4543)
* OrigAnnot class instead of gold.orig_annot list of zipped tuples

* from_orig to replace from_annot_tuples

* rename to RawAnnot

* some unit tests for GoldParse creation and internal format

* removing orig_annot and switching to lists instead of tuple

* rewriting tuples to use RawAnnot (+ debug statements, WIP)

* fix pop() changing the data

* small fixes

* pop-append fixes

* return RawAnnot for existing GoldParse to have uniform interface

* clean up imports

* fix merge_sents

* add unit test for 4402 with new structure (not working yet)

* introduce DocAnnot

* typo fixes

* add unit test for merge_sents

* rename from_orig to from_raw

* fixing unit tests

* fix nn parser

* read_annots to produce text, doc_annot pairs

* _make_golds fix

* rename golds_to_gold_annots

* small fixes

* fix encoding

* have golds_to_gold_annots use DocAnnot

* missed a spot

* merge_sents as function in DocAnnot

* allow specifying only part of the token-level annotations

* refactor with Example class + underlying dicts

* pipeline components to work with Example objects (wip)

* input checking

* fix yielding

* fix calls to update

* small fixes

* fix scorer unit test with new format

* fix kwargs order

* fixes for ud and conllu scripts

* fix reading data for conllu script

* add in proper errors (not fixed numbering yet to avoid merge conflicts)

* fixing few more small bugs

* fix EL script
2019-11-11 17:35:27 +01:00
Ines Montani
dad5621166 Tidy up and auto-format [ci skip] 2019-08-31 13:39:31 +02:00
Matthew Honnibal
6c783f8045 Bug fixes and options for TextCategorizer (#3472)
* Fix code for bag-of-words feature extraction

The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).

* Support 'bow' architecture for TextCategorizer

This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.

* Fix size limits in train_textcat example

* Explain architectures better in docs
2019-03-23 16:44:44 +01:00
Matthew Honnibal
4c5f265884
Fix train loop for train_textcat example 2019-03-22 16:10:11 +01:00
Matthew Honnibal
4e3ed2ea88 Add -t2v argument to train_textcat script 2019-03-20 23:05:42 +01:00
Ines Montani
399987c216 Test and update examples [ci skip] 2019-03-16 14:15:49 +01:00
Matthew Honnibal
981cb89194 Fix f-score calculation if zero 2019-02-23 12:45:41 +01:00
Matthew Honnibal
5063d999e5 Set architecture in textcat example 2019-02-23 11:57:59 +01:00
Ines Montani
5d0b60999d Merge branch 'master' into develop 2019-02-07 20:54:07 +01:00
Hunter Kelly
f28a1c7271 Update call to mkdir() to create the parents (#3139)
* Update call to `mkdir()` to create the parents

- Update the call to `output_dir.mkdir()` to also create the parents if needed

* don't automatically create parents but fail fast if cannot create directory

* add signed contributors agreement for retnuh
2019-01-11 03:02:18 +01:00
Ines Montani
61d09c481b Merge branch 'master' into develop 2018-12-18 13:48:10 +01:00
Matthew Honnibal
375f0dc529
💫 Make TextCategorizer default to a simpler, GPU-friendly model (#3038)
Currently the TextCategorizer defaults to a fairly complicated model, designed partly around the active learning requirements of Prodigy. The model's a bit slow, and not very GPU-friendly.

This patch implements a straightforward CNN model that still performs pretty well. The replacement model also makes it easy to use the LMAO pretraining, since most of the parameters are in the CNN.

The replacement model has a flag to specify whether labels are mutually exclusive, which defaults to True. This has been a common problem with the text classifier. We'll also now be able to support adding labels to pretrained models again.

Resolves #2934, #2756, #1798, #1748.
2018-12-10 14:37:39 +01:00
Matthew Honnibal
e5685d98a2 Fix averaging in textcat example (closes #2745) (#3032) [ci skip] 2018-12-08 13:27:05 +01:00
Gavriel Loria
ae5601beae Initialize trues to 0.0 in training example (#3004)
* added contributor agreement

* if there are no true positives, precision should be 0.0
2018-12-03 01:33:22 +01:00
Ines Montani
45798cc53e Auto-format examples 2018-12-02 04:26:26 +01:00
Ines Montani
49cee4af92
💫 Interactive code examples, spaCy Universe and various docs improvements (#2274)
* Integrate Python kernel via Binder

* Add live model test for languages with examples

* Update docs and code examples

* Adjust margin (if not bootstrapped)

* Add binder version to global config

* Update terminal and executable code mixins

* Pass attributes through infobox and section

* Hide v-cloak

* Fix example

* Take out model comparison for now

* Add meta text for compat

* Remove chart.js dependency

* Tidy up and simplify JS and port big components over to Vue

* Remove chartjs example

* Add Twitter icon

* Add purple stylesheet option

* Add utility for hand cursor (special cases only)

* Add transition classes

* Add small option for section

* Add thumb object for small round thumbnail images

* Allow unset code block language via "none" value

(workaround to still allow unset language to default to DEFAULT_SYNTAX)

* Pass through attributes

* Add syntax highlighting definitions for Julia, R and Docker

* Add website icon

* Remove user survey from navigation

* Don't hide GitHub icon on small screens

* Make top navigation scrollable on small screens

* Remove old resources page and references to it

* Add Universe

* Add helper functions for better page URL and title

* Update site description

* Increment versions

* Update preview images

* Update mentions of resources

* Fix image

* Fix social images

* Fix problem with cover sizing and floats

* Add divider and move badges into heading

* Add docstrings

* Reference converting section

* Add section on converting word vectors

* Move converting section to custom section and fix formatting

* Remove old fastText example

* Move extensions content to own section

Keep weird ID to not break permalinks for now (we don't want to rewrite URLs if not absolutely necessary)

* Use better component example and add factories section

* Add note on larger model

* Use better example for non-vector

* Remove similarity in context section

Only works via small models with tensors so has always been kind of confusing

* Add note on init-model command

* Fix lightning tour examples and make excutable if possible

* Add spacy train CLI section to train

* Fix formatting and add video

* Fix formatting

* Fix textcat example description (resolves #2246)

* Add dummy file to try resolve conflict

* Delete dummy file

* Tidy up [ci skip]

* Ensure sufficient height of loading container

* Add loading animation to universe

* Update Thebelab build and use better startup message

* Fix asset versioning

* Fix typo [ci skip]

* Add note on project idea label
2018-04-29 02:06:46 +02:00
mpuels
ee4d6fdd40
Fix typo in comment 2017-12-09 13:14:57 +01:00
Ines Montani
1a23a0f87e
Remove broken link (resolves #1541) 2017-11-10 12:28:39 +01:00
ines
89bd40b821 Fix print statement in textcat training example (resolves #1515) 2017-11-08 17:17:40 +01:00
ines
a09c096d3c Get docs ready for v2.0.0 2017-11-07 12:00:43 +01:00
ines
173b1551af Update examples 2017-11-07 01:22:30 +01:00
ines
1b1c9105b4 Update example compatibility statements 2017-11-07 01:11:45 +01:00
ines
8fb48b9b91 Update and document new util functions 2017-11-07 00:22:43 +01:00
ines
fe498b3d5e Update training examples to use "simple style" 2017-11-06 23:14:04 +01:00
ines
8f1d3fc3ee Update textcat example 2017-11-01 17:09:22 +01:00
Matthew Honnibal
dad8f09fba Fix print statements in text classifier example 2017-11-01 16:34:31 +01:00
ines
bfe17b7df1 Fix begin_training if get_gold_tuples is None 2017-11-01 13:14:31 +01:00
ines
4b196fdf7f Fix formatting 2017-11-01 00:43:22 +01:00
ines
a7b9074b4c Update textcat training example and docs 2017-10-27 00:48:45 +02:00
ines
b61866a2e4 Update textcat example 2017-10-27 00:32:19 +02:00
Matthew Honnibal
563f46f026 Fix multi-label support for text classification
The TextCategorizer class is supposed to support multi-label
text classification, and allow training data to contain missing
values.

For this to work, the gradient of the loss should be 0 when labels
are missing. Instead, there was no way to actually denote "missing"
in the GoldParse class, and so the TextCategorizer class treated
the label set within gold.cats as complete.

To fix this, we change GoldParse.cats to be a dict instead of a list.
The GoldParse.cats dict should map to floats, with 1. denoting
'present' and 0. denoting 'absent'. Gradients are zeroed for categories
absent from the gold.cats dict. A nice bonus is that you can also set
values between 0 and 1 for partial membership. You can also set numeric
values, if you're using a text classification model that uses an
appropriate loss function.

Unfortunately this is a breaking change; although the functionality
was only recently introduced and hasn't been properly documented
yet. I've updated the example script accordingly.
2017-10-05 18:43:02 -05:00
Matthew Honnibal
f1b86dff8c Update textcat example 2017-10-04 15:12:28 +02:00
Matthew Honnibal
79a94bc166 Update textcat exampe 2017-10-04 14:55:30 +02:00
Matthew Honnibal
c16ef0a85c Clarify train textcat example 2017-07-29 21:59:27 +02:00
Matthew Honnibal
54a539a113 Finish text classifier example 2017-07-23 00:34:12 +02:00
Matthew Honnibal
2bc7d87c70 Add example for training text classifier 2017-07-22 20:15:32 +02:00