spaCy/examples/pipeline/wiki_entity_linking/train_el.py

458 lines
20 KiB
Python
Raw Normal View History

# coding: utf-8
from __future__ import unicode_literals
import os
import datetime
from os import listdir
import numpy as np
import random
2019-05-23 00:40:10 +03:00
from random import shuffle
from thinc.neural._classes.convolution import ExtractWindow
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic, Tok2Vec, cosine
2019-05-20 12:58:48 +03:00
from thinc.api import chain, concatenate, flatten_add_lengths, clone, with_flatten
2019-05-21 00:54:55 +03:00
from thinc.v2v import Model, Maxout, Affine, ReLu
2019-05-20 12:58:48 +03:00
from thinc.t2v import Pooling, mean_pool, sum_pool
2019-05-14 09:37:52 +03:00
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
from thinc.misc import LayerNorm as LN
from spacy.cli.pretrain import get_cossim_loss
2019-05-23 16:37:05 +03:00
from spacy.matcher import PhraseMatcher
2019-05-13 15:26:04 +03:00
from spacy.tokens import Doc
""" TODO: this code needs to be implemented in pipes.pyx"""
class EL_Model:
2019-05-23 16:37:05 +03:00
PRINT_INSPECT = False
2019-05-27 15:29:38 +03:00
PRINT_TRAIN = True
2019-05-15 03:23:08 +03:00
EPS = 0.0000000005
CUTOFF = 0.5
2019-05-23 00:40:10 +03:00
BATCH_SIZE = 5
# UPSAMPLE = True
2019-05-23 00:40:10 +03:00
2019-05-23 16:37:05 +03:00
DOC_CUTOFF = 300 # number of characters from the doc context
INPUT_DIM = 300 # dimension of pre-trained vectors
HIDDEN_1_WIDTH = 32
# HIDDEN_2_WIDTH = 32 # 6
DESC_WIDTH = 64
ARTICLE_WIDTH = 64
2019-05-23 17:59:11 +03:00
SENT_WIDTH = 64
2019-05-17 18:44:11 +03:00
2019-05-21 00:54:55 +03:00
DROP = 0.1
2019-05-27 15:29:38 +03:00
LEARN_RATE = 0.0001
EPOCHS = 10
2019-05-27 15:29:38 +03:00
L2 = 1e-6
name = "entity_linker"
def __init__(self, kb, nlp):
run_el._prepare_pipeline(nlp, kb)
self.nlp = nlp
self.kb = kb
self._build_cnn(embed_width=self.INPUT_DIM,
desc_width=self.DESC_WIDTH,
2019-05-22 00:42:46 +03:00
article_width=self.ARTICLE_WIDTH,
sent_width=self.SENT_WIDTH, hidden_1_width=self.HIDDEN_1_WIDTH)
2019-05-14 09:37:52 +03:00
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
# raise errors instead of runtime warnings in case of int/float overflow
2019-05-27 15:29:38 +03:00
# (not sure if we need this. set L2 to 0 because it throws an error otherwsise)
# np.seterr(all='raise')
# alternative:
np.seterr(divide="raise", over="warn", under="ignore", invalid="raise")
2019-05-23 16:37:05 +03:00
train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts = \
self._get_training_data(training_dir, entity_descr_output, False, trainlimit, to_print=False)
train_clusters = list(train_ent.keys())
2019-05-23 16:37:05 +03:00
2019-05-24 23:04:25 +03:00
dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts = \
self._get_training_data(training_dir, entity_descr_output, True, devlimit, to_print=False)
dev_clusters = list(dev_ent.keys())
2019-05-24 23:04:25 +03:00
dev_pos_count = len([g for g in dev_gold.values() if g])
dev_neg_count = len([g for g in dev_gold.values() if not g])
2019-05-23 16:37:05 +03:00
# inspect data
if self.PRINT_INSPECT:
for cluster, entities in train_ent.items():
2019-05-23 16:37:05 +03:00
print()
for entity in entities:
print("entity", entity)
print("gold", train_gold[entity])
print("desc", train_desc[entity])
print("sentence ID", train_sent[entity])
print("sentence text", train_sent_texts[train_sent[entity]])
print("article ID", train_art[entity])
print("article text", train_art_texts[train_art[entity]])
print()
2019-05-23 00:40:10 +03:00
2019-05-23 17:59:11 +03:00
train_pos_entities = [k for k, v in train_gold.items() if v]
train_neg_entities = [k for k, v in train_gold.items() if not v]
2019-05-23 00:40:10 +03:00
train_pos_count = len(train_pos_entities)
train_neg_count = len(train_neg_entities)
# if self.UPSAMPLE:
# if to_print:
# print()
# print("Upsampling, original training instances pos/neg:", train_pos_count, train_neg_count)
#
# # upsample positives to 50-50 distribution
# while train_pos_count < train_neg_count:
# train_ent.append(random.choice(train_pos_entities))
# train_pos_count += 1
#
2019-05-24 23:04:25 +03:00
# upsample negatives to 50-50 distribution
# while train_neg_count < train_pos_count:
# train_ent.append(random.choice(train_neg_entities))
# train_neg_count += 1
2019-05-23 00:40:10 +03:00
self._begin_training()
if to_print:
print()
print("Training on", len(train_clusters), "entity clusters in", len(train_art_texts), "articles")
2019-05-23 16:37:05 +03:00
print("Training instances pos/neg:", train_pos_count, train_neg_count)
2019-05-23 00:40:10 +03:00
print()
print("Dev test on", len(dev_clusters), "entity clusters in", len(dev_art_texts), "articles")
2019-05-23 16:37:05 +03:00
print("Dev instances pos/neg:", dev_pos_count, dev_neg_count)
2019-05-17 18:44:11 +03:00
print()
print(" CUTOFF", self.CUTOFF)
2019-05-23 16:37:05 +03:00
print(" DOC_CUTOFF", self.DOC_CUTOFF)
2019-05-17 18:44:11 +03:00
print(" INPUT_DIM", self.INPUT_DIM)
2019-05-27 00:39:46 +03:00
# print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
2019-05-23 00:40:10 +03:00
print(" DESC_WIDTH", self.DESC_WIDTH)
2019-05-17 18:44:11 +03:00
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
2019-05-23 17:59:11 +03:00
print(" SENT_WIDTH", self.SENT_WIDTH)
2019-05-27 00:39:46 +03:00
# print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
2019-05-17 18:44:11 +03:00
print(" DROP", self.DROP)
2019-05-27 00:39:46 +03:00
print(" LEARNING RATE", self.LEARN_RATE)
print(" UPSAMPLE", self.UPSAMPLE)
2019-05-17 18:44:11 +03:00
print()
2019-05-23 17:59:11 +03:00
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
print_string="dev_random", calc_random=True)
2019-05-27 00:39:46 +03:00
2019-05-23 17:59:11 +03:00
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
print_string="dev_pre", avg=True)
2019-05-23 16:37:05 +03:00
2019-05-27 00:39:46 +03:00
processed = 0
2019-05-24 23:04:25 +03:00
for i in range(self.EPOCHS):
shuffle(train_clusters)
2019-05-23 00:40:10 +03:00
2019-05-24 23:04:25 +03:00
start = 0
stop = min(self.BATCH_SIZE, len(train_clusters))
2019-05-23 00:40:10 +03:00
while start < len(train_clusters):
next_batch = {c: train_ent[c] for c in train_clusters[start:stop]}
processed += len(next_batch.keys())
2019-05-23 00:40:10 +03:00
self.update(entity_clusters=next_batch, golds=train_gold, descs=train_desc,
art_texts=train_art_texts, arts=train_art,
sent_texts=train_sent_texts, sents=train_sent)
2019-05-24 23:04:25 +03:00
start = start + self.BATCH_SIZE
stop = min(stop + self.BATCH_SIZE, len(train_clusters))
2019-05-24 23:04:25 +03:00
2019-05-27 00:39:46 +03:00
if self.PRINT_TRAIN:
2019-05-27 15:29:38 +03:00
print()
2019-05-27 00:39:46 +03:00
self._test_dev(train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts,
print_string="train_inter_epoch " + str(i), avg=True)
2019-05-27 00:39:46 +03:00
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
print_string="dev_inter_epoch " + str(i), avg=True)
if to_print:
print()
print("Trained on", processed, "entity clusters across", self.EPOCHS, "epochs")
def _test_dev(self, entity_clusters, golds, descs, arts, art_texts, sents, sent_texts,
2019-05-23 17:59:11 +03:00
print_string, avg=True, calc_random=False):
2019-05-23 00:40:10 +03:00
correct = 0
incorrect = 0
for cluster, entities in entity_clusters.items():
correct_entities = [e for e in entities if golds[e]]
incorrect_entities = [e for e in entities if not golds[e]]
assert len(correct_entities) == 1
2019-05-23 00:40:10 +03:00
entities = list(entities)
shuffle(entities)
2019-05-23 00:40:10 +03:00
if calc_random:
predicted_entity = random.choice(entities)
if predicted_entity in correct_entities:
correct += 1
else:
incorrect += 1
else:
desc_docs = self.nlp.pipe([descs[e] for e in entities])
# article_texts = [art_texts[arts[e]] for e in entities]
2019-05-13 15:26:04 +03:00
sent_doc = self.nlp(sent_texts[sents[cluster]])
article_doc = self.nlp(art_texts[arts[cluster]])
2019-05-17 18:44:11 +03:00
predicted_index = self._predict(article_doc=article_doc, sent_doc=sent_doc,
desc_docs=desc_docs, avg=avg)
if entities[predicted_index] in correct_entities:
correct += 1
else:
incorrect += 1
2019-05-23 17:59:11 +03:00
if correct == incorrect == 0:
print("acc", print_string, "NA")
return 0
acc = correct / (correct + incorrect)
print("acc", print_string, round(acc, 2))
return acc
2019-05-17 18:44:11 +03:00
def _predict(self, article_doc, sent_doc, desc_docs, avg=True, apply_threshold=True):
2019-05-17 18:44:11 +03:00
if avg:
with self.article_encoder.use_params(self.sgd_article.averages) \
and self.desc_encoder.use_params(self.sgd_desc.averages)\
and self.sent_encoder.use_params(self.sgd_sent.averages):
# doc_encoding = self.article_encoder(article_doc)
desc_encodings = self.desc_encoder(desc_docs)
sent_encoding = self.sent_encoder([sent_doc])
2019-05-17 18:44:11 +03:00
else:
# doc_encodings = self.article_encoder(article_docs)
desc_encodings = self.desc_encoder(desc_docs)
sent_encoding = self.sent_encoder([sent_doc])
2019-05-17 18:44:11 +03:00
sent_enc = np.transpose(sent_encoding)
highest_sim = -5
best_i = -1
for i, desc_enc in enumerate(desc_encodings):
sim = cosine(desc_enc, sent_enc)
if sim >= highest_sim:
best_i = i
highest_sim = sim
return best_i
def _predict_random(self, entities, apply_threshold=True):
if not apply_threshold:
2019-05-23 17:59:11 +03:00
return [float(random.uniform(0, 1)) for _ in entities]
else:
2019-05-23 17:59:11 +03:00
return [float(1.0) if random.uniform(0, 1) > self.CUTOFF else float(0.0) for _ in entities]
def _build_cnn(self, embed_width, desc_width, article_width, sent_width, hidden_1_width):
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
self.desc_encoder = self._encoder(in_width=embed_width, hidden_with=hidden_1_width,
end_width=desc_width)
self.article_encoder = self._encoder(in_width=embed_width, hidden_with=hidden_1_width,
end_width=article_width)
self.sent_encoder = self._encoder(in_width=embed_width, hidden_with=hidden_1_width,
end_width=sent_width)
# def _encoder(self, width):
# tok2vec = Tok2Vec(width=width, embed_size=2000, pretrained_vectors=self.nlp.vocab.vectors.name, cnn_maxout_pieces=3,
# subword_features=False, conv_depth=4, bilstm_depth=0)
#
# return tok2vec >> flatten_add_lengths >> Pooling(mean_pool)
2019-05-27 00:39:46 +03:00
@staticmethod
def _encoder(in_width, hidden_with, end_width):
2019-05-20 18:20:39 +03:00
conv_depth = 2
2019-05-20 12:58:48 +03:00
cnn_maxout_pieces = 3
with Model.define_operators({">>": chain}):
2019-05-23 17:59:11 +03:00
convolution = Residual((ExtractWindow(nW=1) >>
LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces))))
2019-05-20 12:58:48 +03:00
encoder = SpacyVectors \
2019-05-22 00:42:46 +03:00
>> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
2019-05-20 12:58:48 +03:00
>> flatten_add_lengths \
2019-05-22 00:42:46 +03:00
>> ParametricAttention(hidden_with)\
2019-05-20 12:58:48 +03:00
>> Pooling(mean_pool) \
2019-05-22 00:42:46 +03:00
>> Residual(zero_init(Maxout(hidden_with, hidden_with))) \
>> zero_init(Affine(end_width, hidden_with, drop_factor=0.0))
2019-05-21 00:54:55 +03:00
# TODO: ReLu or LN(Maxout) ?
2019-05-20 12:58:48 +03:00
# sum_pool or mean_pool ?
return encoder
def _begin_training(self):
2019-05-17 18:44:11 +03:00
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
2019-05-24 23:04:25 +03:00
self.sgd_article.learn_rate = self.LEARN_RATE
2019-05-27 15:29:38 +03:00
self.sgd_article.L2 = self.L2
2019-05-27 00:39:46 +03:00
2019-05-23 17:59:11 +03:00
self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
2019-05-24 23:04:25 +03:00
self.sgd_sent.learn_rate = self.LEARN_RATE
2019-05-27 15:29:38 +03:00
self.sgd_sent.L2 = self.L2
2019-05-27 00:39:46 +03:00
2019-05-23 17:59:11 +03:00
self.sgd_desc = create_default_optimizer(self.desc_encoder.ops)
2019-05-24 23:04:25 +03:00
self.sgd_desc.learn_rate = self.LEARN_RATE
2019-05-27 15:29:38 +03:00
self.sgd_desc.L2 = self.L2
2019-05-27 00:39:46 +03:00
# self.sgd = create_default_optimizer(self.model.ops)
# self.sgd.learn_rate = self.LEARN_RATE
# self.sgd.L2 = self.L2
@staticmethod
def get_loss(predictions, golds):
loss, gradients = get_cossim_loss(predictions, golds)
return loss, gradients
def update(self, entity_clusters, golds, descs, art_texts, arts, sent_texts, sents):
for cluster, entities in entity_clusters.items():
correct_entities = [e for e in entities if golds[e]]
incorrect_entities = [e for e in entities if not golds[e]]
assert len(correct_entities) == 1
entities = list(entities)
shuffle(entities)
2019-05-20 12:58:48 +03:00
# article_text = art_texts[arts[cluster]]
cluster_sent = sent_texts[sents[cluster]]
2019-05-17 18:44:11 +03:00
# art_docs = self.nlp.pipe(article_text)
sent_doc = self.nlp(cluster_sent)
for e in entities:
if golds[e]:
# TODO: more appropriate loss for the whole cluster (currently only pos entities)
# TODO: speed up
desc_doc = self.nlp(descs[e])
# doc_encodings, bp_doc = self.article_encoder.begin_update(art_docs, drop=self.DROP)
sent_encodings, bp_sent = self.sent_encoder.begin_update([sent_doc], drop=self.DROP)
desc_encodings, bp_desc = self.desc_encoder.begin_update([desc_doc], drop=self.DROP)
sent_encoding = sent_encodings[0]
desc_encoding = desc_encodings[0]
sent_enc = self.sent_encoder.ops.asarray([sent_encoding])
desc_enc = self.sent_encoder.ops.asarray([desc_encoding])
# print("sent_encoding", type(sent_encoding), sent_encoding)
# print("desc_encoding", type(desc_encoding), desc_encoding)
# print("getting los for entity", e)
2019-05-20 18:20:39 +03:00
loss, gradient = self.get_loss(sent_enc, desc_enc)
# print("gradient", gradient)
# print("loss", loss)
bp_sent(gradient, sgd=self.sgd_sent)
# bp_desc(desc_gradients, sgd=self.sgd_desc) TODO
# print()
2019-05-23 00:40:10 +03:00
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)
entities_by_cluster = dict()
2019-05-23 00:40:10 +03:00
gold_by_entity = dict()
desc_by_entity = dict()
article_by_cluster = dict()
2019-05-23 16:37:05 +03:00
text_by_article = dict()
sentence_by_cluster = dict()
2019-05-23 16:37:05 +03:00
text_by_sentence = dict()
sentence_by_text = dict()
cnt = 0
2019-05-23 16:37:05 +03:00
next_entity_nr = 1
next_sent_nr = 1
2019-05-23 00:40:10 +03:00
files = listdir(training_dir)
shuffle(files)
for f in files:
if not limit or cnt < limit:
2019-05-13 15:26:04 +03:00
if dev == run_el.is_dev(f):
article_id = f.replace(".txt", "")
if cnt % 500 == 0 and to_print:
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
cnt += 1
2019-05-23 16:37:05 +03:00
# parse the article text
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
text = file.read()
article_doc = self.nlp(text)
truncated_text = text[0:min(self.DOC_CUTOFF, len(text))]
text_by_article[article_id] = truncated_text
# process all positive and negative entities, collect all relevant mentions in this article
for mention, entity_pos in correct_entries[article_id].items():
cluster = article_id + "_" + mention
descr = id_to_descr.get(entity_pos)
entities = set()
if descr:
entity = "E_" + str(next_entity_nr) + "_" + cluster
2019-05-23 00:40:10 +03:00
next_entity_nr += 1
2019-05-23 16:37:05 +03:00
gold_by_entity[entity] = 1
desc_by_entity[entity] = descr
entities.add(entity)
entity_negs = incorrect_entries[article_id][mention]
for entity_neg in entity_negs:
descr = id_to_descr.get(entity_neg)
if descr:
entity = "E_" + str(next_entity_nr) + "_" + cluster
next_entity_nr += 1
gold_by_entity[entity] = 0
desc_by_entity[entity] = descr
entities.add(entity)
found_matches = 0
if len(entities) > 1:
entities_by_cluster[cluster] = entities
# find all matches in the doc for the mentions
# TODO: fix this - doesn't look like all entities are found
matcher = PhraseMatcher(self.nlp.vocab)
patterns = list(self.nlp.tokenizer.pipe([mention]))
matcher.add("TerminologyList", None, *patterns)
matches = matcher(article_doc)
# store sentences
for match_id, start, end in matches:
found_matches += 1
span = article_doc[start:end]
assert mention == span.text
sent_text = span.sent.text
sent_nr = sentence_by_text.get(sent_text, None)
if sent_nr is None:
sent_nr = "S_" + str(next_sent_nr) + article_id
next_sent_nr += 1
text_by_sentence[sent_nr] = sent_text
sentence_by_text[sent_text] = sent_nr
article_by_cluster[cluster] = article_id
sentence_by_cluster[cluster] = sent_nr
if found_matches == 0:
# TODO print("Could not find neg instances or sentence matches for", mention, "in", article_id)
entities_by_cluster.pop(cluster, None)
article_by_cluster.pop(cluster, None)
sentence_by_cluster.pop(cluster, None)
for entity in entities:
gold_by_entity.pop(entity, None)
desc_by_entity.pop(entity, None)
2019-05-23 16:37:05 +03:00
if to_print:
print()
print("Processed", cnt, "training articles, dev=" + str(dev))
print()
return entities_by_cluster, gold_by_entity, desc_by_entity, article_by_cluster, text_by_article, \
sentence_by_cluster, text_by_sentence
2019-05-23 00:40:10 +03:00