I have added numbers in hindi lex_attrs.py file according to Indian numbering system(https://en.wikipedia.org/wiki/Indian_numbering_system) and here are there english translations:
'शून्य' => zero
'एक' => one
'दो' => two
'तीन' => three
'चार' => four
'पांच' => five
'छह' => six
'सात'=>seven
'आठ' => eight
'नौ' => nine
'दस' => ten
'ग्यारह' => eleven
'बारह' => twelve
'तेरह' => thirteen
'चौदह' => fourteen
'पंद्रह' => fifteen
'सोलह'=> sixteen
'सत्रह' => seventeen
'अठारह' => eighteen
'उन्नीस' => nineteen
'बीस' => twenty
'तीस' => thirty
'चालीस' => forty
'पचास' => fifty
'साठ' => sixty
'सत्तर' => seventy
'अस्सी' => eighty
'नब्बे' => ninety
'सौ' => hundred
'हज़ार' => thousand
'लाख' => hundred thousand
'करोड़' => ten million
'अरब' => billion
'खरब' => hundred billion
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Exceptions for single letter words ending sentence
Sentences ending in "i." (as in "... peka i."), "m." (as in "...än 2000 m."), should be tokenized as two separate tokens.
* Add test
## Description
Related issues: #2379 (should be fixed by separating model tests)
* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible
### Todo
- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests
### Types of change
enhancement, tests
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
This patch improves tokenizer speed by about 10%, and reduces memory usage in the `Vocab` by removing a redundant index. The `vocab._by_orth` and `vocab._by_hash` indexed on different data in v1, but in v2 the orth and the hash are identical.
The patch also fixes an uninitialized variable in the tokenizer, the `has_special` flag. This checks whether a chunk we're tokenizing triggers a special-case rule. If it does, then we avoid caching within the chunk. This check led to incorrectly rejecting some chunks from the cache.
With the `en_core_web_md` model, we now tokenize the IMDB train data at 503,104k words per second. Prior to this patch, we had 465,764k words per second.
Before switching to the regex library and supporting more languages, we had 1.3m words per second for the tokenizer. In order to recover the missing speed, we need to:
* Fix the variable-length lookarounds in the suffix, infix and `token_match` rules
* Improve the performance of the `token_match` regex
* Switch back from the `regex` library to the `re` library.
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
This jargon is not offencive but emotionally colored as funny due to its deviation from the norm for various reasons: immitating a dialect, deliberately wrong spelling emphasizing its low colloquial nature, obsolete form, foreign borrowing with native flections, etc.
Dmitry Briukhanov, Linguist & Pythonist
* Add helper function for reading in JSONL
* Add rule-based NER component
* Fix whitespace
* Add component to factories
* Add tests
* Add option to disable indent on json_dumps compat
Otherwise, reading JSONL back in line by line won't work
* Fix error code
List created by taking the 2000 top words from a Wikipedia dump and
removing everything that wasn't hiragana.
Tried going through kanji words and deciding what to keep but there were
too many obvious non-stopwords (東京 was in the top 500) and many other
words where it wasn't clear if they should be included or not.
<!--- Provide a general summary of your changes in the title. -->
## Description
This PR corrects the German lemma form for the word "Rang". Initially, the lemma form was "ringen", which is not correct, because it refers to the verb ("ringen") and not to the noun ("Rang").
### Types of change
The lemma form for "Rang" is corrected to "Rang", see also the [Duden](https://www.duden.de/rechtschreibung/Rang) entry.
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
<!--- Provide a general summary of your changes in the title. -->
Referring #2452, fixing displacy arrow directions to match the input.
## Description
The fix is simply replacing `direction is 'left'` with `direction == 'left'` to include the case `direction` is a `str` and not a `unicode`.
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Pass through "silent" kwarg to the wrapper in the spacy module init.
reference issue #2196
* Pass through "silent" kwarg to the wrapper in the spacy module init.
reference issue #2196
* contributor agreement
* issue_2385 add tests for iob_to_biluo converter function
* issue_2385 fix and modify iob_to_biluo function to accept either iob or biluo tags in cli.converter
* issue_2385 add test to fix b char bug
* add contributor agreement
* fill contributor agreement
## Description
Fix for issue #2361 :
replace &, <, >, " with &amp; , &lt; , &gt; , &quot; in before rendering svg
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
(As discussed in the comments to #2361)
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Simplify is_config() and normalize_string_keys()
* Use __in__ to avoid the nested _ands_ and _ors_.
* Dict comprehension directly tracks with the doc string
* Keep more basic loop in normalize_string_keys
* Whitespace
* Add logic to filter out warning IDs via environment variable
Usage: SPACY_WARNING_EXCLUDE=W001,W007
* Add warnings for empty vectors
* Add warning if no word vectors are used in .similarity methods
For example, if only tensors are available in small models – should hopefully clear up some confusion around this
* Capture warnings in tests
* Rename SPACY_WARNING_EXCLUDE to SPACY_WARNING_IGNORE
* Go back to using requests instead of urllib (closes#2320)
Fewer dependencies are good, but this one was simply causing too many other problems around SSL verification and Python 2/3 compatibility. requests is a popular enough package that it's okay for spaCy to depend on it – and this will hopefully make model downloads less flakey.
* Only download model if not installed (see #1456)
Use #egg=model==version to allow pip to check for existing installations. The download is only started if no installation matching the package/version is found. Fixes a long-standing inconvenience.
* Pass additional options to pip when installing model (resolves#1456)
Treat all additional arguments passed to the download command as pip options to allow user to customise the command. For example:
python -m spacy download en --user
* Add CLI option to enable installing model package dependencies
* Revert "Add CLI option to enable installing model package dependencies"
This reverts commit 9336ffe695.
* Update documentation
* Add Romanian lemmatizer lookup table.
Adapted from http://www.lexiconista.com/datasets/lemmatization/
by replacing cedillas with commas (ș and ț).
The original dataset is licensed under the Open Database License.
* Fix one blatant issue in the Romanian lemmatizer
* Romanian examples file
* Add ro_tokenizer in conftest
* Add Romanian lemmatizer test
* Update lex_attrs.py
Fixed spelling mistakes of some numbers (according to Brazilian Portuguese).
* Update lex_attrs.py
As requested, I've included the correct spelling for both Brazilian Portuguese and Portuguese Portuguese.
I will advise however, that the two are separated in the future. Brazilian Portuguese is a very different language from the original one, although most of the writing is unified, the way people talk in both countries is radically different. Keeping both languages as one may lead to bigger issues in the future, especially when it comes to spell checking.
* Add contraction forms of some common stopwords
All the stopwords added contain the apostrophe" ' "or " ’ ".
* Adds contributor agreement mauryaland
* Update mauryaland.md
* Port Japanese mecab tokenizer from v1
This brings the Mecab-based Japanese tokenization introduced in #1246 to
spaCy v2. There isn't a JapaneseTagger implementation yet, but POS tag
information from Mecab is stored in a token extension. A tag map is also
included.
As a reminder, Mecab is required because Universal Dependencies are
based on Unidic tags, and Janome doesn't support Unidic.
Things to check:
1. Is this the right way to use a token extension?
2. What's the right way to implement a JapaneseTagger? The approach in
#1246 relied on `tag_from_strings` which is just gone now. I guess the
best thing is to just try training spaCy's default Tagger?
-POLM
* Add tagging/make_doc and tests