* customizable template for entities display, allowing to pass additional parameters along each entity
* contributor agreement
* simpler naming for the additional parameters given to the span entities renderer
Co-Authored-By: Ines Montani <ines@ines.io>
* change of default parameter, as suggested
Co-Authored-By: Ines Montani <ines@ines.io>
* Extending debug-data with dependency checks, etc.
* Modify debug-data to load with GoldCorpus to iterate over .json/.jsonl
files within directories
* Add GoldCorpus iterator train_docs_without_preprocessing to load
original train docs without shuffling and projectivizing
* Report number of misaligned tokens
* Add more dependency checks and messages
* Update spacy/cli/debug_data.py
Co-Authored-By: Ines Montani <ines@ines.io>
* Fixed conflict
* Move counts to _compile_gold()
* Move all dependency nonproj/sent/head/cycle counting to
_compile_gold()
* Unclobber previous merges
* Update variable names
* Update more variable names, fix misspelling
* Don't clobber loading error messages
* Only warn about misaligned tokens if present
* Check whether two entities overlap
- biluo_gold_biluo_overlap now throw exception when entities passed in have overlaps
- added unit test
* SCA agreement
Provide the tokens in the cycle and the first 50 tokens from document in
the error message so it's easier to track down the location of the cycle
in the data.
Addresses feature request in #3698.
* pytest file for issue4104 established
* edited default lookup english lemmatizer for spun; fixes issue 4102
* eliminated parameterization and sorted dictionary dependnency in issue 4104 test
* added contributor agreement
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* turn kb_creator into CLI script (wip)
* proper parameters for training entity vectors
* wikidata pipeline split up into two executable scripts
* remove context_width
* move wikidata scripts in bin directory, remove old dummy script
* refine KB script with logs and preprocessing options
* small edits
* small improvements to logging of EL CLI script
* Update gold corpus code to properly ingest a directory of jsonlines files
In response to: https://github.com/explosion/spaCy/issues/3975
* Update spacy/gold.pyx
Co-Authored-By: Ines Montani <ines@ines.io>
* Improve NER per type scoring
* include all gold labels in per type scoring, not only when recall > 0
* improve efficiency of per type scoring
* Create Scorer tests, initially with NER tests
* move regression test #3968 (per type NER scoring) to Scorer tests
* add new test for per type NER scoring with imperfect P/R/F and per
type P/R/F including a case where R == 0.0
* Improve error message when model.from_bytes() dies
When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,
e.g. "AttributeError: FunctionLayer has no attribute G"
This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.
I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.
* Update spacy/pipeline/pipes.pyx
* Update spacy/pipeline/pipes.pyx
* Update spacy/pipeline/pipes.pyx
* Update spacy/syntax/nn_parser.pyx
* Update spacy/syntax/nn_parser.pyx
* Update spacy/pipeline/pipes.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Update spacy/pipeline/pipes.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
* failing unit test for issue 3962
* attempt to fix Issue #3962
* create artificial unit test example
* using length instead of self.length
* sp
* reformat with black
* find better ancestor within span and use generic 'dep'
* attach to span.root if there is no appropriate ancestor
* comment span text
* clean up ancestor code
* reconstruct dep tree to keep same number of sentences
Expected an `entity_ruler.jsonl` file in the top-level model directory, so the path passed to from_disk by default (model path plus componentn name), but with the suffix ".jsonl".
* Update pretrain to prevent unintended overwriting of weight files for #3859
* Add '--epoch-start' to pretrain docs
* Add mising pretrain arguments to bash example
* Update doc tag for v2.1.5
* Evaluation of NER model per entity type, closes ##3490
Now each ent score is tracked individually in order to have its own Precision, Recall and F1 Score
* Keep track of each entity individually using dicts
* Improving how to compute the scores for each entity
* Fixed bug computing scores for ents
* Formatting with black
* Added key ents_per_type to the scores function
The key `ents_per_type` contains the metrics Precision, Recall and F1-Score for each entity individually
* Perserve flags in EntityRuler
The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized. This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.
* add signed contributor agreement
* flake8 cleanup
mostly blank line issues.
* mark test from the issue as needing a model
The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.
* Adds `phrase_matcher_attr` to allow args to PhraseMatcher
This is an added arg to pass to the `PhraseMatcher`. For example,
this allows creation of a case insensitive phrase matcher when the
`EntityRuler` is created. References explosion/spaCy#3822
* remove unneeded model loading
The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)
* updated docstring for new argument
* updated docs to reflect new argument to the EntityRuler constructor
* change tempdir handling to be compatible with python 2.7
* return conflicted code to entityruler
Some stuff got cut out because of merge conflicts, this
returns that code for the phrase_matcher_attr.
* fixed typo in the code added back after conflicts
* flake8 compliance
When I deconflicted the branch there were some flake8 issues
introduced. This resolves the spacing problems.
* test changes: attempts to fix flaky test in python3.5
These tests seem to be alittle flaky in 3.5 so I changed the check to avoid
the comparisons that seem to be fail sometimes.
* Perserve flags in EntityRuler
The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized. This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.
* add signed contributor agreement
* flake8 cleanup
mostly blank line issues.
* mark test from the issue as needing a model
The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.
* remove unneeded model loading
The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)
* change tempdir handling to be compatible with python 2.7
* Adds code to handle item saved before this change.
This code chanes how the save files are handled and how the bytes
are stored as well. This code adds check to dispatch correctly
if it encounters bytes or files saved in the old format (and tests
for those cases).
* use util function for tempdir management
Updated after PR comments: this code now uses the make_tempdir function from util
instead of doing it by hand.
* Norwegian fix
Add support for alternative past tense verb form (vaska).
* Norwegian months
Add all Norwegian months to tokenizer excpetions.
* More Norwegian abbreviations
Add more Norwegian abbreviations to tokenizer_exceptions.
* Contributor agreement khellan
Add signed contributor agreement for khellan (Knut O. Hellan).
* initial LT lang support
* Added more stopwords. Started setting up some basic test environment (not complete)
* Initial morph rules for LT lang
* Closes#1 Adds tokenizer exceptions for Lithuanian
* Closes#5 Punctuation rules. Closes#6 Lexical Attributes
* test: add native examples to basic tests
* feat: add tag map for lt lang
* fix: remove undefined tag attribute 'Definite'
* feat: add lemmatizer for lt lang
* refactor: add new instances to lt lang morph rules; use tags from tag map
* refactor: add morph rules to lt lang defaults
* refactor: only keep nouns, verbs, adverbs and adjectives in lt lang lemmatizer lookup
* refactor: add capitalized words to lt lang lemmatizer
* refactor: add more num words to lt lang lex attrs
* refactor: update lt lang stop word set
* refactor: add new instances to lt lang tokenizer exceptions
* refactor: remove comments form lt lang init file
* refactor: use function instead of lambda in lt lex lang getter
* refactor: remove conversion to dict in lt init when dict is already provided
* chore: rename lt 'test_basic' to 'test_text'
* feat: add more lt text tests
* feat: add lemmatizer tests
* refactor: remove unused imports, add newline to end of file
* chore: add contributor agreement
* chore: change 'en' to 'lt' in lt example description
* fix: add missing encoding info
* style: add newline to end of file
* refactor: use python2 compatible syntax
* style: reformat code using black
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`
* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.
* Add missing quotation marks
* Adding support for entity_id in EntityRuler pipeline component
* Adding Spacy Contributor aggreement
* Updating EntityRuler to use string.format instead of f strings
* Update Entity Ruler to support an 'id' attribute per pattern that explicitly identifies an entity.
* Fixing tests
* Remove custom extension entity_id and use built in ent_id token attribute.
* Changing entity_id to ent_id for consistent naming
* entity_ids => ent_ids
* Removing kb, cleaning up tests, making util functions private, use rsplit instead of split
* Add check for empty input file to CLI pretrain
* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key
* Skip empty values for correct pretrain keys and log a counter as warning
* Add tests for CLI pretrain core function make_docs.
* Add a short hint for the `tokens` key to the CLI pretrain docs
* Add success message to CLI pretrain
* Update model loading to fix the tests
* Skip empty values and do not create docs out of it
* Update norm_exceptions.py
Extended the Currency set to include Franc, Indian Rupee, Bangladeshi Taka, Korean Won, Mexican Dollar, and Egyptian Pound
* Fix formatting [ci skip]
* Adding Marathi language details and folder to it
* Adding few changes and running tests
* Adding few changes and running tests
* Update __init__.py
mh -> mr
* Rename spacy/lang/mh/__init__.py to spacy/lang/mr/__init__.py
* mh -> mr
* Add custom __dir__ to Underscore (see #3707)
* Make sure custom extension methods keep their docstrings (see #3707)
* Improve tests
* Prepend note on partial to docstring (see #3707)
* Remove print statement
* Handle cases where docstring is None
* Update glossary.py to match information found in documentation
I used regexes to add any dependency tag that was in the documentation but not in the glossary. Solves #3679👍
* Adds forgotten colon
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
* add Thai norm_exception
* Add Dobita21 SCA
* editรึ : หรือ,
* Update Dobita21.md
* Auto-format
* Integrate norms into language defaults
* add acronym and some norm exception words
* add lex_attrs
* Add lexical attribute getters into the language defaults
* fix LEX_ATTRS
Co-authored-by: Donut <dobita21@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
* add Thai norm_exception
* Add Dobita21 SCA
* editรึ : หรือ,
* Update Dobita21.md
* Auto-format
* Integrate norms into language defaults
* add acronym and some norm exception words
<!--- Provide a general summary of your changes in the title. -->
When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
To test...
Save this file to `sample_sents.jsonl`
```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```
Then run `--save-every 2` when pretraining.
```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```
And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.
At the end the training, you should see these files (`ls here/`):
```bash
config.json model2.bin model5.bin model8.bin
log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin model3.bin model6.bin model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin model4.bin model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
This is a new feature to `spacy pretrain`.
🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).**
```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
run(args.root)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
process(base, filename, db)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
func(*args)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
File "setup.py", line 276, in <module>
setup_package()
File "setup.py", line 209, in setup_package
generate_cython(root, "spacy")
File "setup.py", line 132, in generate_cython
raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```
Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
* add Thai norm_exception
* Add Dobita21 SCA
* editรึ : หรือ,
* Update Dobita21.md
* Auto-format
* Integrate norms into language defaults
If the Morphology class tries to lemmatize a word that's not in the
string store, it's forced to just return it as-is. While loading
exceptions, the class could hit a case where these strings weren't in
the string store yet. The resulting lemmas could then be cached, leading
to some words receiving upper-case lemmas. Closes#3551.
* Add early stopping
* Add return_score option to evaluate
* Fix missing str to path conversion
* Fix import + old python compatibility
* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
Co-authored-by: Ines Montani <ines@ines.io>
* added tag_map for indonesian
* changed tag map from .py to .txt to see if tests pass
* added symbols import
* added utf8 encoding flag
* added missing SCONJ symbol
* Auto-format
* Remove unused imports
* Make tag map available in Indonesian defaults
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Fix a bug in the test of JapaneseTokenizer.
This PR may require @polm's review.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
Bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* fix(util): fix decaying function output
* fix(util): better test and adhere to code standards
* fix(util): correct variable name, pytestify test, update website text
* Fix code for bag-of-words feature extraction
The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).
* Support 'bow' architecture for TextCategorizer
This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.
* Fix size limits in train_textcat example
* Explain architectures better in docs
v2.1 introduced a regression when deserializing the parser after
parser.add_label() had been called. The code around the class mapping is
pretty confusing currently, as it was written to accommodate backwards
model compatibility. It needs to be revised when the models are next
retrained.
Closes#3433
spaCy v2.1 switched to the built-in re module, where v2.0 had been using
the third-party regex library. When the tokenizer was deserialized on
Python2.7, the `re.compile()` function was called with expressions that
featured escaped unicode codepoints that were not in Python2.7's unicode
database.
Problems occurred when we had a range between two of these unknown
codepoints, like this:
```
'[\\uAA77-\\uAA79]'
```
On Python2.7, the unknown codepoints are not unescaped correctly,
resulting in arbitrary out-of-range characters being matched by the
expression.
This problem does not occur if we instead have a range between two
unicode literals, rather than the escape sequences. To fix the bug, we
therefore add a new compat function that unescapes unicode sequences
using the `ast.literal_eval()` function. Care is taken to ensure we
do not also escape non-unicode sequences.
Closes#3356.
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.