* Add Doc init from list of words and text
Add an option to initialize a `Doc` from a text and list of words where
the words may or may not include all whitespace tokens. If the text and
words are mismatched, raise an error.
* Fix error code
* Remove all whitespace before aligning words/text
* Move words/text init to util function
* Update error message
* Rename to get_words_and_spaces
* Fix formatting
* Fixed typo in cli warning
Fixed a typo in the warning for the provision of exactly two labels, which have not been designated as binary, to textcat.
* Create and signed contributor form
* Use inline flags in token_match patterns
Use inline flags in `token_match` patterns so that serializing does not
lose the flag information.
* Modify inline flag
* Modify inline flag
* Add pos and morph scoring to Scorer
Add pos, morph, and morph_per_type to `Scorer`. Report pos and morph
accuracy in `spacy evaluate`.
* Update morphologizer for v3
* switch to tagger-based morphologizer
* use `spacy.HashCharEmbedCNN` for morphologizer defaults
* add `Doc.is_morphed` flag
* Add morphologizer to train CLI
* Add basic morphologizer pipeline tests
* Add simple morphologizer training example
* Remove subword_features from CharEmbed models
Remove `subword_features` argument from `spacy.HashCharEmbedCNN.v1` and
`spacy.HashCharEmbedBiLSTM.v1` since in these cases `subword_features`
is always `False`.
* Rename setting in morphologizer example
Use `with_pos_tags` instead of `without_pos_tags`.
* Fix kwargs for spacy.HashCharEmbedBiLSTM.v1
* Remove defaults for spacy.HashCharEmbedBiLSTM.v1
Remove default `nM/nC` for `spacy.HashCharEmbedBiLSTM.v1`.
* Set random seed for textcat overfitting test
* bring back default build_text_classifier method
* remove _set_dims_ hack in favor of proper dim inference
* add tok2vec initialize to unit test
* small fixes
* add unit test for various textcat config settings
* logistic output layer does not have nO
* fix window_size setting
* proper fix
* fix W initialization
* Update textcat training example
* Use ml_datasets
* Convert training data to `Example` format
* Use `n_texts` to set proportionate dev size
* fix _init renaming on latest thinc
* avoid setting a non-existing dim
* update to thinc==8.0.0a2
* add BOW and CNN defaults for easy testing
* various experiments with train_textcat script, fix softmax activation in textcat bow
* allow textcat train script to work on other datasets as well
* have dataset as a parameter
* train textcat from config, with example config
* add config for training textcat
* formatting
* fix exclusive_classes
* fixing BOW for GPU
* bump thinc to 8.0.0a3 (not published yet so CI will fail)
* add in link_vectors_to_models which got deleted
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Check whether doc is instantiated
When creating docs to pair with gold parses, modify test to check
whether a doc is unset rather than whether it contains tokens.
* Restore test of evaluate on an empty doc
* Set a minimal gold.orig for the scorer
Without a minimal gold.orig the scorer can't evaluate empty docs. This
is the v3 equivalent of #4925.
* Modify Vector.resize to work with cupy
Modify `Vectors.resize` to work with cupy. Modify behavior when resizing
to a different vector dimension so that individual vectors are truncated
or extended with zeros instead of having the original values filled into
the new shape without regard for the original axes.
* Update spacy/tests/vocab_vectors/test_vectors.py
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Omit per_type scores from model-best calculations
The addition of per_type scores to the included metrics (#4911) causes
errors when they're compared while determining the best model, so omit
them for this `max()` comparison.
* Add default speed data for interrupted train CLI
Add better speed meta defaults so that an interrupted iteration still
produces a best model.
Co-authored-by: Ines Montani <ines@ines.io>
UD_Danish-DDT has (as far as I can tell) hallucinated periods after
abbreviations, so the changes are an artifact of the corpus and not due
to anything meaningful about Danish tokenization.
* Revert changes to priority of `token_match` so that it has priority
over all other tokenizer patterns
* Add lookahead and potentially slow lookbehind back to the default URL
pattern
* Expand character classes in URL pattern to improve matching around
lookaheads and lookbehinds related to #4882
* Revert changes to Hungarian tokenizer
* Revert (xfail) several URL tests to their status before #4374
* Update `tokenizer.explain()` and docs accordingly
* avoid changing original config
* fix elif structure, batch with just int crashes otherwise
* tok2vec example with doc2feats, encode and embed architectures
* further clean up MultiHashEmbed
* further generalize Tok2Vec to work with extract-embed-encode parts
* avoid initializing the charembed layer with Docs (for now ?)
* small fixes for bilstm config (still does not run)
* rename to core layer
* move new configs
* walk model to set nI instead of using core ref
* fix senter overfitting test to be more similar to the training data (avoid flakey behaviour)
* merge_entities sets the vector in the vocab for the merged token
* add unit test
* import unicode_literals
* move code to _merge function
* only set vector if vocab has non-zero vectors
* Update sentence recognizer
* rename `sentrec` to `senter`
* use `spacy.HashEmbedCNN.v1` by default
* update to follow `Tagger` modifications
* remove component methods that can be inherited from `Tagger`
* add simple initialization and overfitting pipeline tests
* Update serialization test for senter
* Improve token head verification
Improve the verification for valid token heads when heads are set:
* in `Token.head`: heads come from the same document
* in `Doc.from_array()`: head indices are within the bounds of the
document
* Improve error message
* Fix model-final/model-best meta
* include speed and accuracy from final iteration
* combine with speeds from base model if necessary
* Include token_acc metric for all components
* fix grad_clip naming
* cleaning up pretrained_vectors out of cfg
* further refactoring Model init's
* move Model building out of pipes
* further refactor to require a model config when creating a pipe
* small fixes
* making cfg in nn_parser more consistent
* fixing nr_class for parser
* fixing nn_parser's nO
* fix printing of loss
* architectures in own file per type, consistent naming
* convenience methods default_tagger_config and default_tok2vec_config
* let create_pipe access default config if available for that component
* default_parser_config
* move defaults to separate folder
* allow reading nlp from package or dir with argument 'name'
* architecture spacy.VocabVectors.v1 to read static vectors from file
* cleanup
* default configs for nel, textcat, morphologizer, tensorizer
* fix imports
* fixing unit tests
* fixes and clean up
* fixing defaults, nO, fix unit tests
* restore parser IO
* fix IO
* 'fix' serialization test
* add *.cfg to manifest
* fix example configs with additional arguments
* replace Morpohologizer with Tagger
* add IO bit when testing overfitting of tagger (currently failing)
* fix IO - don't initialize when reading from disk
* expand overfitting tests to also check IO goes OK
* remove dropout from HashEmbed to fix Tagger performance
* add defaults for sentrec
* update thinc
* always pass a Model instance to a Pipe
* fix piped_added statement
* remove obsolete W029
* remove obsolete errors
* restore byte checking tests (work again)
* clean up test
* further test cleanup
* convert from config to Model in create_pipe
* bring back error when component is not initialized
* cleanup
* remove calls for nlp2.begin_training
* use thinc.api in imports
* allow setting charembed's nM and nC
* fix for hardcoded nM/nC + unit test
* formatting fixes
* trigger build
* add lemma option to displacy 'dep' visualiser
* more compact list comprehension
* add option to doc
* fix test and add lemmas to util.get_doc
* fix capital
* remove lemma from get_doc
* cleanup
* Fix german stop words
Two stop words ("einige" and "einigen") are sticking together.
Remove three nouns that may serve as stop words in a specific context (e.g. religious or news) but are not applicable for general use.
* Create Jan-711.md
* Fix ent_ids and labels properties when id attribute used in patterns
* use set for labels
* sort end_ids for comparison in entity_ruler tests
* fixing entity_ruler ent_ids test
* add to set
* Run make_doc optimistically if using phrase matcher patterns.
* remove unused coveragerc I was testing with
* format
* Refactor EntityRuler.add_patterns to use nlp.pipe for phrase patterns. Improves speed substantially.
* Removing old add_patterns function
* Fixing spacing
* Make sure token_patterns loaded as well, before generator was being emptied in from_disk
* Sync Span __eq__ and __hash__
Use the same tuple for `__eq__` and `__hash__`, including all attributes
except `vector` and `vector_norm`.
* Update entity comparison in tests
Update `assert_docs_equal()` test util to compare `Span` properties for
ents rather than `Span` objects.
Modify flag settings so that `DEP` is not sufficient to set `is_parsed`
and only run `set_children_from_heads()` if `HEAD` is provided.
Then the combination `[SENT_START, DEP]` will set deps and not clobber
sent starts with a lot of one-word sentences.
* Improve setup.py and call into Cython directly
* Add numpy to setup_requires
* Improve clean helper
* Update setup.cfg
* Try if it builds without pyproject.toml
* Update MANIFEST.in
* Rename `tag_map.py` to `tag_map_fine.py` to indicate that it's not the
default tag map
* Remove duplicate generic UD tag map and load `../tag_map.py` instead
* don't split on a colon. Colon is used to attach suffixes for abbreviations
* tokenize on any of LIST_HYPHENS (except a single hyphen), not just on --
* simplify infix rules by merging similar rules
* Add correct stopwords for Slovak language
* Add SNK Tags
* Disable formatting lint for TAGS
* Add example sentences for Slovak language
* Add slovak numerals in base form
* Add lex_attrs to sk init
* Add contributor agreement
* label in span not writable anymore
* Revert "label in span not writable anymore"
This reverts commit ab442338c8.
* fixing yield - remove redundant list
* Add convert CLI option to merge CoNLL-U subtokens
Add `-T` option to convert CLI that merges CoNLL-U subtokens into one
token in the converted data. Each CoNLL-U sentence is read into a `Doc`
and the `Retokenizer` is used to merge subtokens with features as
follows:
* `orth` is the merged token orth (should correspond to raw text and `#
text`)
* `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET`
* `pos` is the POS of the syntactic root of the span (as determined by
the Retokenizer)
* `morph` is all morphological features merged
* `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o`
* with `-m` all morphological features are combined with the tag using
the separator `__`, e.g.
`ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art`
* `dep` is the dependency relation for the syntactic root of the span
(as determined by the Retokenizer)
Concatenated tags will be mapped to the UD POS of the syntactic root
(e.g., `ADP`) and the morphological features will be the combined
features.
In many cases, the original UD subtokens can be reconstructed from the
available features given a language-specific lookup table, e.g.,
Portuguese `do / ADP_DET /
Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o /
DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules
for forms containing open class words like Spanish `hablarlo / VERB_PRON
/
Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`.
* Clean up imports
* Add load_from_config function
* Add train_from_config script
* Merge configs and expose via spacy.config
* Fix script
* Suggest create_evaluation_callback
* Hard-code for NER
* Fix errors
* Register command
* Add TODO
* Update train-from-config todos
* Fix imports
* Allow delayed setting of parser model nr_class
* Get train-from-config working
* Tidy up and fix scores and printing
* Hide traceback if cancelled
* Fix weighted score formatting
* Fix score formatting
* Make output_path optional
* Add Tok2Vec component
* Tidy up and add tok2vec_tensors
* Add option to copy docs in nlp.update
* Copy docs in nlp.update
* Adjust nlp.update() for set_annotations
* Don't shuffle pipes in nlp.update, decruft
* Support set_annotations arg in component update
* Support set_annotations in parser update
* Add get_gradients method
* Add get_gradients to parser
* Update errors.py
* Fix problems caused by merge
* Add _link_components method in nlp
* Add concept of 'listeners' and ControlledModel
* Support optional attributes arg in ControlledModel
* Try having tok2vec component in pipeline
* Fix tok2vec component
* Fix config
* Fix tok2vec
* Update for Example
* Update for Example
* Update config
* Add eg2doc util
* Update and add schemas/types
* Update schemas
* Fix nlp.update
* Fix tagger
* Remove hacks from train-from-config
* Remove hard-coded config str
* Calculate loss in tok2vec component
* Tidy up and use function signatures instead of models
* Support union types for registry models
* Minor cleaning in Language.update
* Make ControlledModel specifically Tok2VecListener
* Fix train_from_config
* Fix tok2vec
* Tidy up
* Add function for bilstm tok2vec
* Fix type
* Fix syntax
* Fix pytorch optimizer
* Add example configs
* Update for thinc describe changes
* Update for Thinc changes
* Update for dropout/sgd changes
* Update for dropout/sgd changes
* Unhack gradient update
* Work on refactoring _ml
* Remove _ml.py module
* WIP upgrade cli scripts for thinc
* Move some _ml stuff to util
* Import link_vectors from util
* Update train_from_config
* Import from util
* Import from util
* Temporarily add ml.component_models module
* Move ml methods
* Move typedefs
* Update load vectors
* Update gitignore
* Move imports
* Add PrecomputableAffine
* Fix imports
* Fix imports
* Fix imports
* Fix missing imports
* Update CLI scripts
* Update spacy.language
* Add stubs for building the models
* Update model definition
* Update create_default_optimizer
* Fix import
* Fix comment
* Update imports in tests
* Update imports in spacy.cli
* Fix import
* fix obsolete thinc imports
* update srsly pin
* from thinc to ml_datasets for example data such as imdb
* update ml_datasets pin
* using STATE.vectors
* small fix
* fix Sentencizer.pipe
* black formatting
* rename Affine to Linear as in thinc
* set validate explicitely to True
* rename with_square_sequences to with_list2padded
* rename with_flatten to with_list2array
* chaining layernorm
* small fixes
* revert Optimizer import
* build_nel_encoder with new thinc style
* fixes using model's get and set methods
* Tok2Vec in component models, various fixes
* fix up legacy tok2vec code
* add model initialize calls
* add in build_tagger_model
* small fixes
* setting model dims
* fixes for ParserModel
* various small fixes
* initialize thinc Models
* fixes
* consistent naming of window_size
* fixes, removing set_dropout
* work around Iterable issue
* remove legacy tok2vec
* util fix
* fix forward function of tok2vec listener
* more fixes
* trying to fix PrecomputableAffine (not succesful yet)
* alloc instead of allocate
* add morphologizer
* rename residual
* rename fixes
* Fix predict function
* Update parser and parser model
* fixing few more tests
* Fix precomputable affine
* Update component model
* Update parser model
* Move backprop padding to own function, for test
* Update test
* Fix p. affine
* Update NEL
* build_bow_text_classifier and extract_ngrams
* Fix parser init
* Fix test add label
* add build_simple_cnn_text_classifier
* Fix parser init
* Set gpu off by default in example
* Fix tok2vec listener
* Fix parser model
* Small fixes
* small fix for PyTorchLSTM parameters
* revert my_compounding hack (iterable fixed now)
* fix biLSTM
* Fix uniqued
* PyTorchRNNWrapper fix
* small fixes
* use helper function to calculate cosine loss
* small fixes for build_simple_cnn_text_classifier
* putting dropout default at 0.0 to ensure the layer gets built
* using thinc util's set_dropout_rate
* moving layer normalization inside of maxout definition to optimize dropout
* temp debugging in NEL
* fixed NEL model by using init defaults !
* fixing after set_dropout_rate refactor
* proper fix
* fix test_update_doc after refactoring optimizers in thinc
* Add CharacterEmbed layer
* Construct tagger Model
* Add missing import
* Remove unused stuff
* Work on textcat
* fix test (again :)) after optimizer refactor
* fixes to allow reading Tagger from_disk without overwriting dimensions
* don't build the tok2vec prematuraly
* fix CharachterEmbed init
* CharacterEmbed fixes
* Fix CharacterEmbed architecture
* fix imports
* renames from latest thinc update
* one more rename
* add initialize calls where appropriate
* fix parser initialization
* Update Thinc version
* Fix errors, auto-format and tidy up imports
* Fix validation
* fix if bias is cupy array
* revert for now
* ensure it's a numpy array before running bp in ParserStepModel
* no reason to call require_gpu twice
* use CupyOps.to_numpy instead of cupy directly
* fix initialize of ParserModel
* remove unnecessary import
* fixes for CosineDistance
* fix device renaming
* use refactored loss functions (Thinc PR 251)
* overfitting test for tagger
* experimental settings for the tagger: avoid zero-init and subword normalization
* clean up tagger overfitting test
* use previous default value for nP
* remove toy config
* bringing layernorm back (had a bug - fixed in thinc)
* revert setting nP explicitly
* remove setting default in constructor
* restore values as they used to be
* add overfitting test for NER
* add overfitting test for dep parser
* add overfitting test for textcat
* fixing init for linear (previously affine)
* larger eps window for textcat
* ensure doc is not None
* Require newer thinc
* Make float check vaguer
* Slop the textcat overfit test more
* Fix textcat test
* Fix exclusive classes for textcat
* fix after renaming of alloc methods
* fixing renames and mandatory arguments (staticvectors WIP)
* upgrade to thinc==8.0.0.dev3
* refer to vocab.vectors directly instead of its name
* rename alpha to learn_rate
* adding hashembed and staticvectors dropout
* upgrade to thinc 8.0.0.dev4
* add name back to avoid warning W020
* thinc dev4
* update srsly
* using thinc 8.0.0a0 !
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
* Restructure tag maps for MorphAnalysis changes
Prepare tag maps for upcoming MorphAnalysis changes that allow
arbritrary features.
* Use default tag map rather than duplicating for ca / uk / vi
* Import tag map into defaults for ga
* Modify tag maps so all morphological fields and features are strings
* Move features from `"Other"` to the top level
* Rewrite tuples as strings separated by `","`
* Rewrite morph symbols for fr lemmatizer as strings
* Export MorphAnalysis under spacy.tokens
* Modify morphology to support arbitrary features
Modify `Morphology` and `MorphAnalysis` so that arbitrary features are
supported.
* Modify `MorphAnalysisC` so that it can support arbitrary features and
multiple values per field. `MorphAnalysisC` is redesigned to contain:
* key: hash of UD FEATS string of morphological features
* array of `MorphFeatureC` structs that each contain a hash of `Field`
and `Field=Value` for a given morphological feature, which makes it
possible to:
* find features by field
* represent multiple values for a given field
* `get_field()` is renamed to `get_by_field()` and is no longer `nogil`.
Instead a new helper function `get_n_by_field()` is `nogil` and returns
`n` features by field.
* `MorphAnalysis.get()` returns all possible values for a field as a
list of individual features such as `["Tense=Pres", "Tense=Past"]`.
* `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string.
* `Morphology.feats_to_dict()` converts a UD FEATS string to a dict
where:
* Each field has one entry in the dict
* Multiple values remain separated by a separator in the value string
* `Token.morph_` returns the UD FEATS string and you can set
`Token.morph_` with a UD FEATS string or with a tag map dict.
* Modify get_by_field to use np.ndarray
Modify `get_by_field()` to use np.ndarray. Remove `max_results` from
`get_n_by_field()` and always iterate over all the fields.
* Rewrite without MorphFeatureC
* Add shortcut for existing feats strings as keys
Add shortcut for existing feats strings as keys in `Morphology.add()`.
* Check for '_' as empty analysis when adding morphs
* Extend helper converters in Morphology
Add and extend helper converters that convert and normalize between:
* UD FEATS strings (`"Case=dat,gen|Number=sing"`)
* per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`)
* list of individual features (`["Case=dat", "Case=gen",
"Number=sing"]`)
All converters sort fields and values where applicable.
* Fix ent_ids and labels properties when id attribute used in patterns
* use set for labels
* sort end_ids for comparison in entity_ruler tests
* fixing entity_ruler ent_ids test
* add to set
Improve train CLI with a provided base model so that you can:
* add a new component
* extend an existing component
* replace an existing component
When the final model and best model are saved, reenable any disabled
components and merge the meta information to include the full pipeline
and accuracy information for all components in the base model plus the
newly added components if needed.
* Mark most Hungarian tokenizer test cases as slow
Mark most Hungarian tokenizer test cases as slow to reduce the runtime
of the test suite in ordinary usage:
* for normal tests: run default tests plus 10% of the detailed tests
* for slow tests: run all tests
* Rework to mark individual tests as slow
* move nlp processing for el pipe to batch training instead of preprocessing
* adding dev eval back in, and limit in articles instead of entities
* use pipe whenever possible
* few more small doc changes
* access dev data through generator
* tqdm description
* small fixes
* update documentation
* match domains longer than `hostname.domain.tld` like `www.foo.co.uk`
* expand allowed characters in domain names while only matching
lowercase TLDs so that "this.That" isn't matched as a URL and can be
split on the period as an infix (relevant for at least English, German,
and Tatar)
* expand serialization test for custom token attribute
* add failing test for issue 4849
* define ENT_ID as attr and use in doc serialization
* fix few typos
* label in span not writable anymore
* Revert "label in span not writable anymore"
This reverts commit ab442338c8.
* provide more friendly error msg for parsing file
* Adding Support for Yoruba
* test text
* Updated test string.
* Fixing encoding declaration.
* Adding encoding to stop_words.py
* Added contributor agreement and removed iranlowo.
* Added removed test files and removed iranlowo to keep project bare.
* Returned CONTRIBUTING.md to default state.
* Added delted conftest entries
* Tidy up and auto-format
* Revert CONTRIBUTING.md
Co-authored-by: Ines Montani <ines@ines.io>
Instead of a hard-coded NER tag simplification function that was only
intended for NorNE, map NER tags in CoNLL-U converter using a dict
provided as JSON as a command-line option.
Map NER entity types or new tag or to "" for 'O', e.g.:
```
{"PER": "PERSON", "BAD": ""}
=>
B-PER -> B-PERSON
B-BAD -> O
```
* Include Doc.cats in to_bytes()
* Include Doc.cats in DocBin serialization
* Add tests for serialization of cats
Test serialization of cats for Doc and DocBin.
* Enable lex_attrs on Finnish
* Copy the Danish tokenizer rules to Finnish
Specifically, don't break hyphenated compound words
* Contributor agreement
* A new file for Finnish tokenizer rules instead of including the Danish ones
- added some tests for tokenization issues
- fixed some issues with tokenization of words with hyphen infix
- rewrote the "tokenizer_exceptions.py" file (stemming from the German version)
* Add sent_starts to GoldParse
* Add SentTagger pipeline component
Add `SentTagger` pipeline component as a subclass of `Tagger`.
* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
* S (1): token at beginning of sentence
* I (0): all other sentence positions
* Sets `token.sent_start` values
* Add sentence segmentation to Scorer
Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.
* Add sentence segmentation to CLI evaluate
* Add senttagger metrics/scoring to train CLI
* Rename SentTagger to SentenceRecognizer
* Add SentenceRecognizer to spacy.pipes imports
* Add SentenceRecognizer serialization test
* Shorten component name to sentrec
* Remove duplicates from train CLI output metrics
* Restructure Sentencizer to follow Pipe API
Restructure Sentencizer to follow Pipe API so that it can be scored with
`nlp.evaluate()`.
* Add Sentencizer pipe() test
Replace old gold alignment that allowed for some noise in the alignment between raw and orth with the new simpler alignment that requires that the raw and orth strings are identical except for whitespace and capitalization.
* Replace old alignment with new alignment, removing `_align.pyx` and
its tests
* Remove all quote normalizations
* Enable test for new align
* Modify test case for quote normalization
* Switch to train_dataset() function in train CLI
* Fixes for pipe() methods in pipeline components
* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`
* Update Parser.pipe() for Examples
* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s
* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)
* Fixes to Example implementation in spacy.gold
* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`
* Head of 0 are not treated as unset
* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)
* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example
* Don't clobber `examples` variable in `iter_gold_docs()`
* Add/modify gold tests for handling projectivity
* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)
* Add test for projective train vs. nonprojective dev versions of the
same `Doc`
* Handle ignore_misaligned as arg rather than attr
Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.
Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).
* Remove unused attrs from gold.pxd
Remove `ignore_misaligned` and `make_projective` from `gold.pxd`
* Restructure Example with merged sents as default
An `Example` now includes a single `TokenAnnotation` that includes all
the information from one `Doc` (=JSON `paragraph`). If required, the
individual sentences can be returned as a list of examples with
`Example.split_sents()` with no raw text available.
* Input/output a single `Example.token_annotation`
* Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries
* Replace `Example.merge_sents()` with `Example.split_sents()`
* Modify components to use a single `Example.token_annotation`
* Pipeline components
* conllu2json converter
* Rework/rename `add_token_annotation()` and `add_doc_annotation()` to
`set_token_annotation()` and `set_doc_annotation()`, functions that set
rather then appending/extending.
* Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse`
* Add getters to `TokenAnnotation` to supply default values when a given
attribute is not available
* `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only
applied on single examples, so the `GoldParse` is returned saved in the
provided `Example` rather than creating a new `Example` with no other
internal annotation
* Update tests for API changes and `merge_sents()` vs. `split_sents()`
* Refer to Example.goldparse in iter_gold_docs()
Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError
* Fix make_orth_variants()
Fix bug in make_orth_variants() related to conversion from multiple to
one TokenAnnotation per Example.
* Add basic test for make_orth_variants()
* Replace try/except with conditionals
* Replace default morph value with set
Iterate over lr_edges until all heads are within the current sentence.
Instead of iterating over them for a fixed number of iterations, check
whether the sentence boundaries are correct for the heads and stop when
all are correct. Stop after a maximum of 10 iterations, providing a
warning in this case since the sentence boundaries may not be correct.
* Switch to train_dataset() function in train CLI
* Fixes for pipe() methods in pipeline components
* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`
* Update Parser.pipe() for Examples
* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s
* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)
* Fixes to Example implementation in spacy.gold
* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`
* Head of 0 are not treated as unset
* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)
* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example
* Don't clobber `examples` variable in `iter_gold_docs()`
* Add/modify gold tests for handling projectivity
* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)
* Add test for projective train vs. nonprojective dev versions of the
same `Doc`
* Handle ignore_misaligned as arg rather than attr
Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.
Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).
* Remove unused attrs from gold.pxd
Remove `ignore_misaligned` and `make_projective` from `gold.pxd`
* Refer to Example.goldparse in iter_gold_docs()
Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError
* Update test for ignore_misaligned
* Switch from mecab-python3 to fugashi
mecab-python3 has been the best MeCab binding for a long time but it's
not very actively maintained, and since it's based on old SWIG code
distributed with MeCab there's a limit to how effectively it can be
maintained.
Fugashi is a new Cython-based MeCab wrapper I wrote. Since it's not
based on the old SWIG code it's easier to keep it current and make small
deviations from the MeCab C/C++ API where that makes sense.
* Change mecab-python3 to fugashi in setup.cfg
* Change "mecab tags" to "unidic tags"
The tags come from MeCab, but the tag schema is specified by Unidic, so
it's more proper to refer to it that way.
* Update conftest
* Add fugashi link to external deps list for Japanese
* Detect more empty matches in tokenizer.explain()
* Include a few languages in explain non-slow tests
Mark a few languages in tokenizer.explain() tests as not slow so they're
run by default.
* Expose tokenizer rules as a property
Expose the tokenizer rules property in the same way as the other core
properties. (The cache resetting is overkill, but consistent with
`from_bytes` for now.)
Add tests and update Tokenizer API docs.
* Update Hungarian punctuation to remove empty string
Update Hungarian punctuation definitions so that `_units` does not match
an empty string.
* Use _load_special_tokenization consistently
Use `_load_special_tokenization()` and have it to handle `None` checks.
* Fix precedence of `token_match` vs. special cases
Remove `token_match` check from `_split_affixes()` so that special cases
have precedence over `token_match`. `token_match` is checked only before
infixes are split.
* Add `make_debug_doc()` to the Tokenizer
Add `make_debug_doc()` to the Tokenizer as a working implementation of
the pseudo-code in the docs.
Add a test (marked as slow) that checks that `nlp.tokenizer()` and
`nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens
for all languages that have `examples.sentences` that can be imported.
* Update tokenization usage docs
Update pseudo-code and algorithm description to correspond to
`nlp.tokenizer.make_debug_doc()` with example debugging usage.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Revert "Update Hungarian punctuation to remove empty string"
This reverts commit f0a577f7a5.
* Rework `make_debug_doc()` as `explain()`
Rework `make_debug_doc()` as `explain()`, which returns a list of
`(pattern_string, token_string)` tuples rather than a non-standard
`Doc`. Update docs and tests accordingly, leaving the visualization for
future work.
* Handle cases with bad tokenizer patterns
Detect when tokenizer patterns match empty prefixes and suffixes so that
`explain()` does not hang on bad patterns.
* Remove unused displacy image
* Add tokenizer.explain() to usage docs
* Generalize handling of tokenizer special cases
Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.
Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:
* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes
Existing tests/settings that couldn't be preserved as before:
* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again
When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.
* Remove accidentally added test case
* Really remove accidentally added test
* Reload special cases when necessary
Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.
* Update error code number
* Fix offset and whitespace in Matcher special cases
* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case
* Improve cache flushing in tokenizer
* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21
* Remove reinitialized PreshMaps on cache flush
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Use special Matcher only for cases with affixes
* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
* Additionally include specials cache checks while splitting on infixes
* Since the special Matcher needs consistent affix-only tokenization
for the special cases themselves, introduce the argument
`with_special_cases` in order to do tokenization with or without
specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes
* Replace PhraseMatcher with Aho-Corasick
Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.
The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.
Fixes#4308.
* Restore support for pickling
* Fix internal keyword add/remove for numpy arrays
* Add test for #4248, clean up test
* Improve efficiency of special cases handling
* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
* Process merge/splits in one pass without repeated token shifting
* Merge in place if no splits
* Update error message number
* Remove UD script modifications
Only used for timing/testing, should be a separate PR
* Remove final traces of UD script modifications
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Add missing loop for match ID set in search loop
* Remove cruft in matching loop for partial matches
There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.
* Replace dict trie with MapStruct trie
* Fix how match ID hash is stored/added
* Update fix for match ID vocab
* Switch from map_get_unless_missing to map_get
* Switch from numpy array to Token.get_struct_attr
Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.
Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)
* Restructure imports to export find_matches
* Implement full remove()
Remove unnecessary trie paths and free unused maps.
Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.
* Switch to PhraseMatcher.find_matches
* Switch to local cdef functions for span filtering
* Switch special case reload threshold to variable
Refer to variable instead of hard-coded threshold
* Move more of special case retokenize to cdef nogil
Move as much of the special case retokenization to nogil as possible.
* Rewrap sort as stdsort for OS X
* Rewrap stdsort with specific types
* Switch to qsort
* Fix merge
* Improve cmp functions
* Fix realloc
* Fix realloc again
* Initialize span struct while retokenizing
* Temporarily skip retokenizing
* Revert "Move more of special case retokenize to cdef nogil"
This reverts commit 0b7e52c797.
* Revert "Switch to qsort"
This reverts commit a98d71a942.
* Fix specials check while caching
* Modify URL test with emoticons
The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.
* Refactor _apply_special_cases()
* Use cdef ints for span info used in multiple spots
* Modify _filter_special_spans() to prefer earlier
Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.
* Replace MatchStruct with Entity
Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.
* Replace Entity with more general SpanC
* Replace MatchStruct with SpanC
* Add error in debug-data if no dev docs are available (see #4575)
* Update azure-pipelines.yml
* Revert "Update azure-pipelines.yml"
This reverts commit ed1060cf59.
* Use latest wasabi
* Reorganise install_requires
* add dframcy to universe.json (#4580)
* Update universe.json [ci skip]
* Fix multiprocessing for as_tuples=True (#4582)
* Fix conllu script (#4579)
* force extensions to avoid clash between example scripts
* fix arg order and default file encoding
* add example config for conllu script
* newline
* move extension definitions to main function
* few more encodings fixes
* Add load_from_docbin example [ci skip]
TODO: upload the file somewhere
* Update README.md
* Add warnings about 3.8 (resolves#4593) [ci skip]
* Fixed typo: Added space between "recognize" and "various" (#4600)
* Fix DocBin.merge() example (#4599)
* Replace function registries with catalogue (#4584)
* Replace functions registries with catalogue
* Update __init__.py
* Fix test
* Revert unrelated flag [ci skip]
* Bugfix/dep matcher issue 4590 (#4601)
* add contributor agreement for prilopes
* add test for issue #4590
* fix on_match params for DependencyMacther (#4590)
* Minor updates to language example sentences (#4608)
* Add punctuation to Spanish example sentences
* Combine multilanguage examples for lang xx
* Add punctuation to nb examples
* Always realloc to a larger size
Avoid potential (unlikely) edge case and cymem error seen in #4604.
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* OrigAnnot class instead of gold.orig_annot list of zipped tuples
* from_orig to replace from_annot_tuples
* rename to RawAnnot
* some unit tests for GoldParse creation and internal format
* removing orig_annot and switching to lists instead of tuple
* rewriting tuples to use RawAnnot (+ debug statements, WIP)
* fix pop() changing the data
* small fixes
* pop-append fixes
* return RawAnnot for existing GoldParse to have uniform interface
* clean up imports
* fix merge_sents
* add unit test for 4402 with new structure (not working yet)
* introduce DocAnnot
* typo fixes
* add unit test for merge_sents
* rename from_orig to from_raw
* fixing unit tests
* fix nn parser
* read_annots to produce text, doc_annot pairs
* _make_golds fix
* rename golds_to_gold_annots
* small fixes
* fix encoding
* have golds_to_gold_annots use DocAnnot
* missed a spot
* merge_sents as function in DocAnnot
* allow specifying only part of the token-level annotations
* refactor with Example class + underlying dicts
* pipeline components to work with Example objects (wip)
* input checking
* fix yielding
* fix calls to update
* small fixes
* fix scorer unit test with new format
* fix kwargs order
* fixes for ud and conllu scripts
* fix reading data for conllu script
* add in proper errors (not fixed numbering yet to avoid merge conflicts)
* fixing few more small bugs
* fix EL script
* Rework Chinese language initialization
* Create a `ChineseTokenizer` class
* Modify jieba post-processing to handle whitespace correctly
* Modify non-jieba character tokenization to handle whitespace correctly
* Add a `create_tokenizer()` method to `ChineseDefaults`
* Load lexical attributes
* Update Chinese tag_map for UD v2
* Add very basic Chinese tests
* Test tokenization with and without jieba
* Test `like_num` attribute
* Fix try_jieba_import()
* Fix zh code formatting
The model registry refactor of the Tok2Vec function broke loading models
trained with the previous function, because the model tree was slightly
different. Specifically, the new function wrote:
concatenate(norm, prefix, suffix, shape)
To build the embedding layer. In the previous implementation, I had used
the operator overloading shortcut:
( norm | prefix | suffix | shape )
This actually gets mapped to a binary association, giving something
like:
concatenate(norm, concatenate(prefix, concatenate(suffix, shape)))
This is a different tree, so the layers iterate differently and we
loaded the weights wrongly.
* Xfail new tokenization test
* Put new alignment behind feature flag
* Move USE_ALIGN to top of the file [ci skip]
Co-authored-by: Ines Montani <ines@ines.io>
The `Matcher` in `merge_subtokens()` returns all possible subsequences
of `subtok`, so for sequences of two or more subtoks it's necessary to
filter the matches so that the retokenizer is only merging the longest
matches with no overlapping spans.
* Add arch for MishWindowEncoder
* Support mish in tok2vec and conv window >=2
* Pass new tok2vec settings from parser
* Syntax error
* Fix tok2vec setting
* Fix registration of MishWindowEncoder
* Fix receptive field setting
* Fix mish arch
* Pass more options from parser
* Support more tok2vec options in pretrain
* Require thinc 7.3
* Add docs [ci skip]
* Require thinc 7.3.0.dev0 to run CI
* Run black
* Fix typo
* Update Thinc version
Co-authored-by: Ines Montani <ines@ines.io>
* Flag to ignore examples with mismatched raw/gold text
After #4525, we're seeing some alignment failures on our OntoNotes data. I think we actually have fixes for most of these cases.
In general it's better to fix the data, but it seems good to allow the GoldCorpus class to just skip cases where the raw text doesn't
match up to the gold words. I think previously we were silently ignoring these cases.
* Try to fix test on Python 2.7
The previous version worked with previous thinc, but only
because some thinc ops happened to have gpu/cpu compatible
implementations. It's better to call the right Ops instance.
* Fix get labels for textcat
* Fix char_embed for gpu
* Revert "Fix char_embed for gpu"
This reverts commit 055b9a9e85.
* Fix passing of cats in gold.pyx
* Revert "Match pop with append for training format (#4516)"
This reverts commit 8e7414dace.
* Fix popping gold parses
* Fix handling of cats in gold tuples
* Fix name
* Fix ner_multitask_objective script
* Add test for 4402
* trying to fix script - not succesful yet
* match pop() with extend() to avoid changing the data
* few more pop-extend fixes
* reinsert deleted print statement
* fix print statement
* add last tested version
* append instead of extend
* add in few comments
* quick fix for 4402 + unit test
* fixing number of docs (not counting cats)
* more fixes
* fix len
* print tmp file instead of using data from examples dir
* print tmp file instead of using data from examples dir (2)
* Add work in progress
* Update analysis helpers and component decorator
* Fix porting of docstrings for Python 2
* Fix docstring stuff on Python 2
* Support meta factories when loading model
* Put auto pipeline analysis behind flag for now
* Analyse pipes on remove_pipe and replace_pipe
* Move analysis to root for now
Try to find a better place for it, but it needs to go for now to avoid circular imports
* Simplify decorator
Don't return a wrapped class and instead just write to the object
* Update existing components and factories
* Add condition in factory for classes vs. functions
* Add missing from_nlp classmethods
* Add "retokenizes" to printed overview
* Update assigns/requires declarations of builtins
* Only return data if no_print is enabled
* Use multiline table for overview
* Don't support Span
* Rewrite errors/warnings and move them to spacy.errors
* Implement new API for {Phrase}Matcher.add (backwards-compatible)
* Update docs
* Also update DependencyMatcher.add
* Update internals
* Rewrite tests to use new API
* Add basic check for common mistake
Raise error with suggestion if user likely passed in a pattern instead of a list of patterns
* Fix typo [ci skip]
* Update English tag_map
Update English tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
* Update German tag_map
Update German tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
* Add missing Tiger dependencies to glossary
* Add quotes to definition of TO
* Update POS/TAG tables in docs
Update POS/TAG tables for English and German docs using current
information generated from the tag_maps and GLOSSARY.
* Update warning that -PRON- is specific to English
* Revert docs to default JSON output with convert
* Revert "Revert docs to default JSON output with convert"
This reverts commit 6b78c048f1.
* Support train dict format as JSONL
* Add (overly simple) check for dict vs. tuple to read JSONL lines as
either train dicts or train tuples
* Extend JSON/JSONL roundtrip conversion tests using `docs_to_json()`
and `GoldCorpus.train_tuples`
* Revert docs to default JSON output with convert
* raise specific error when removing a matcher rule that doesn't exist
* rephrasing
* goldparse init: allocate fields only if doc is not empty
* avoid zero length alloc in saving tokenizer cache
* avoid allocating zero length mem in matcher
* asserts to avoid allocating zero length mem
* fix zero-length allocation in matcher
* bump cymem version
* revert cymem version bump
* Free pointers in ActivationsC
* Restructure alloc/free for parser activations
* Rewrite/restructure to have allocation and free in parallel functions
in `_parser_model` rather than partially in `_parseC()` in `Parser`.
* Remove `resize_activations` from `_parser_model.pxd`.
* Create syntax_iterators.py
Replica of spacy/lang/fr/syntax_iterators.py
* Added import statements for SYNTAX_ITERATORS
* Create gustavengstrom.md
* Added "dobj" to list of labels in noun_chunks method and a test_noun_chunks method to the Swedish language model.
* Delete README-checkpoint.md
Co-authored-by: Gustav <gustav@davcon.se>
Co-authored-by: Ines Montani <ines@ines.io>
* Error for ill-formed input to iob_to_biluo()
Check for empty label in iob_to_biluo(), which can result from
ill-formed input.
* Check for empty NER label in debug-data
* Replace MatchStruct with Entity
Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.
* Replace Entity with more general SpanC
* Add missing int value option to top-level pattern validation in Matcher
* Adjust existing tests accordingly
* Add new test for valid pattern `{"LENGTH": int}`
* fix overflow error on windows
* more documentation & logging fixes
* md fix
* 3 different limit parameters to play with execution time
* bug fixes directory locations
* small fixes
* exclude dev test articles from prior probabilities stats
* small fixes
* filtering wikidata entities, removing numeric and meta items
* adding aliases from wikidata also to the KB
* fix adding WD aliases
* adding also new aliases to previously added entities
* fixing comma's
* small doc fixes
* adding subclassof filtering
* append alias functionality in KB
* prevent appending the same entity-alias pair
* fix for appending WD aliases
* remove date filter
* remove unnecessary import
* small corrections and reformatting
* remove WD aliases for now (too slow)
* removing numeric entities from training and evaluation
* small fixes
* shortcut during prediction if there is only one candidate
* add counts and fscore logging, remove FP NER from evaluation
* fix entity_linker.predict to take docs instead of single sentences
* remove enumeration sentences from the WP dataset
* entity_linker.update to process full doc instead of single sentence
* spelling corrections and dump locations in readme
* NLP IO fix
* reading KB is unnecessary at the end of the pipeline
* small logging fix
* remove empty files
* Update util.filter_spans() to prefer earlier spans
* Add filter_spans test for first same-length span
* Update entity relation example to refer to util.filter_spans()
* raise specific error when removing a matcher rule that doesn't exist
* rephrasing
* ensure attrs is NULL when nr_attr == 0 + several fixes to prevent OOB
This is basically stabbing blindly at the ghost match problem, but it at
least seems like there was a bug previously here --- so this should
hopefully be an improvement, even if it doesn't fix the ghost match
problem.
* Only import pkg_resources where it's needed
Apparently it's really slow
* Use importlib_metadata for entry points
* Revert "Only import pkg_resources where it's needed"
This reverts commit 5ed8c03afa.
* Revert "Revert "Only import pkg_resources where it's needed""
This reverts commit 8b30b57957.
* Revert "Use importlib_metadata for entry points"
This reverts commit 9f071f5c40.
* Revert "Revert "Use importlib_metadata for entry points""
This reverts commit 02e12a17ec.
* Skip test that weirdly hangs
* Fix hanging test by using global
* Move prefix and suffix detection for URL_PATTERN
Move prefix and suffix detection for `URL_PATTERN` into the tokenizer.
Remove associated lookahead and lookbehind from `URL_PATTERN`.
Fix tokenization for Hungarian given new modified handling of prefixes
and suffixes.
* Match a wider range of URI schemes
* Move test
* Allow default in Lookups.get_table
* Start with blank tables in Lookups.from_bytes
* Refactor lemmatizer to hold instance of Lookups
* Get lookups table within the lemmatization methods to make sure it references the correct table (even if the table was replaced or modified, e.g. when loading a model from disk)
* Deprecate other arguments on Lemmatizer.__init__ and expect Lookups for consistency
* Remove old and unsupported Lemmatizer.load classmethod
* Refactor language-specific lemmatizers to inherit as much as possible from base class and override only what they need
* Update tests and docs
* Fix more tests
* Fix lemmatizer
* Upgrade pytest to try and fix weird CI errors
* Try pytest 4.6.5
* Add default to util.get_entry_point
* Tidy up entry points
* Read lookups from entry points
* Remove lookup tables and related tests
* Add lookups install option
* Remove lemmatizer tests
* Remove logic to process language data files
* Update setup.cfg
* Tidy up and modernize setup and config
* Update setup.cfg
* Re-add pyproject.toml
* Delete .flake8
* Move static meta from about to setup.cfg
* Update setup.cfg
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* test and fix for second bug of issue 4042
* fix for first bug in 4042
* crashing test for Issue 4313
* forgot one instance of resize
* remove prints
* undo uncomment
* delete test for 4313 (uses third party lib)
* add fix for Issue 4313
* unit test for 4313
* Replace PhraseMatcher with Aho-Corasick
Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.
The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.
Fixes#4308.
* Restore support for pickling
* Fix internal keyword add/remove for numpy arrays
* Add missing loop for match ID set in search loop
* Remove cruft in matching loop for partial matches
There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.
* Replace dict trie with MapStruct trie
* Fix how match ID hash is stored/added
* Update fix for match ID vocab
* Switch from map_get_unless_missing to map_get
* Switch from numpy array to Token.get_struct_attr
Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.
Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)
* Restructure imports to export find_matches
* Implement full remove()
Remove unnecessary trie paths and free unused maps.
Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.
* Store docs internally only as attr lists
* Reduces size for pickle
* Remove duplicate keywords store
Now that docs are stored as lists of attr hashes, there's no need to
have the duplicate _keywords store.
* Allow vectors name to be specified in init-model
* Document --vectors-name argument to init-model
* Update website/docs/api/cli.md
Co-Authored-By: Ines Montani <ines@ines.io>
* remove duplicate unit test
* unit test (currently failing) for issue 4267
* bugfix: ensure doc.ents preserves kb_id annotations
* fix in setting doc.ents with empty label
* rename
* test for presetting an entity to a certain type
* allow overwriting Outside + blocking presets
* fix actions when previous label needs to be kept
* fix default ent_iob in set entities
* cleaner solution with U- action
* remove debugging print statements
* unit tests with explicit transitions and is_valid testing
* remove U- from move_names explicitly
* remove unit tests with pre-trained models that don't work
* remove (working) unit tests with pre-trained models
* clean up unit tests
* move unit tests
* small fixes
* remove two TODO's from doc.ents comments
* make merge more efficient
* fix offsets
* merge works with relative indices
* remove printing
* Add the SCA
* fix SCA date
* more cythonize _retokenize.pyx
* more cythonize _retokenize.pyx
* fix only declaration in _retokenize.pyx
* switch back to absolute head
* switch back to absolute head
* fix comment
* merge from origin repo
* remove redundant __call__ method in pipes.TextCategorizer
Because the parent __call__ method behaves in the same way.
* fix: Pipe.__call__ arg
* fix: invalid arg in Pipe.__call__
* modified: spacy/tests/regression/test_issue4278.py (#4278)
* deleted: Pipfile
* Add doc.cats to spacy.gold at the paragraph level
Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.
* `spacy.gold.docs_to_json()` writes `docs.cats`
* `GoldCorpus` reads in cats in each `GoldParse`
* Update instances of gold_tuples to handle cats
Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.
* Add textcat to train CLI
* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
* For binary exclusive classes with provided label: F1 for label
* For 2+ exclusive classes: F1 macro average
* For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI
* Fix handling of unset arguments and config params
Fix handling of unset arguments and model confiug parameters in Scorer
initialization.
* Temporarily add sklearn requirement
* Remove sklearn version number
* Improve Scorer handling of models without textcats
* Fixing Scorer handling of models without textcats
* Update Scorer output for python 2.7
* Modify inf in Scorer for python 2.7
* Auto-format
Also make small adjustments to make auto-formatting with black easier and produce nicer results
* Move error message to Errors
* Update documentation
* Add cats to annotation JSON format [ci skip]
* Fix tpl flag and docs [ci skip]
* Switch to internal roc_auc_score
Switch to internal `roc_auc_score()` adapted from scikit-learn.
* Add AUCROCScore tests and improve errors/warnings
* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors
* Make reduced roc_auc_score functions private
Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.
* Check that data corresponds with multilabel flag
Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.
* Add textcat score to early stopping check
* Add more checks to debug-data for textcat
* Add example training data for textcat
* Add more checks to textcat train CLI
* Check configuration when extending base model
* Fix typos
* Update textcat example data
* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.
Co-authored-by: Ines Montani <ines@ines.io>
* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
Most of these characters are for languages / writing systems that aren't
supported by spacy, but I don't think it causes problems to include
them. In the UD evals, Hindi and Urdu improve a lot as expected (from
0-10% to 70-80%) and Persian improves a little (90% to 96%). Tamil
improves in combination with #4288.
The punctuation list is converted to a set internally because of its
increased length.
Sentence final punctuation generated with:
```
unichars -gas '[\p{Sentence_Break=STerm}\p{Sentence_Break=ATerm}]' '\p{Terminal_Punctuation}'
```
See: https://stackoverflow.com/a/9508766/461847Fixes#4269.
Add Kannada, Tamil, and Telugu unicode blocks to uncased character
classes so that period is recognized as a suffix during tokenization.
(I'm sure a few symbols in the code blocks should not be ALPHA, but this
is mainly relevant for suffix detection and seems to be an improvement
in practice.)
Before this patch, half-width spaces between words were simply lost in
Japanese text. This wasn't immediately noticeable because much Japanese
text never uses spaces at all.
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Lookups / Tables now work
This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.
* Add lookups to setup.py
* Actually add lookups pyx
The previous commit added the old py file...
* Lookups work-in-progress
* Move from pyx back to py
* Add string based lookups, fix serialization
* Update tests, language/lemmatizer to work with string lookups
There are some outstanding issues here:
- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues
More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.
* Change lemmatizer lookup method to pass (orth, string)
* Fix token lookup
* Fix French lookup
* Fix lt lemmatizer test
* Fix Dutch lemmatizer
* Fix lemmatizer lookup test
This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.
* Make uk/nl/ru lemmatizer lookup methods consistent
The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).
Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.
Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.
* Make recently added Greek method compatible
* Remove redundant class/method
Leftovers from a merge not cleaned up adequately.
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* typo fix
* add candidate API to kb documentation
* update API sidebar with EntityLinker and KnowledgeBase
* remove EL from 101 docs
* remove entity linker from 101 pipelines / rephrase
* custom el model instead of existing model
* set version to 2.2 for EL functionality
* update documentation for 2 CLI scripts
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Fix serialization for lookups
* Fix lookups
* Fix lookups
* Fix lookups
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Give up on serialization test
* Xfail more serialization tests for 3.5
* Fix lookups for 2.7
* Modify retokenizer to use span root attributes
* tag/pos/morph are set to root tag/pos/morph
* lemma and norm are reset and end up as orth (not ideal, but better
than orth of first token)
* Also handle individual merge case
* Add test
* Attempt to handle ent_iob and ent_type in merges
* Fix check for whether B-ENT should become I-ENT
* Move IOB consistency check to after attrs
Move all IOB consistency checks after attrs are set and simplify to
check entire document, modifying I to B at the beginning of the document
or if the entity type of the previous token isn't the same.
* Move IOB consistency check for single merge
Move IOB consistency check after the token array is compressed for the
single merge case.
* Update spacy/tokens/_retokenize.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Remove single vs. multiple merge distinction
Remove original single-instance `_merge()` and use `_bulk_merge()` (now
renamed `_merge()`) for all merges.
* Add out-of-bound check in previous entity check