spaCy/spacy/_ml.py

585 lines
19 KiB
Python
Raw Normal View History

2017-10-27 15:39:30 +03:00
# coding: utf8
from __future__ import unicode_literals
import numpy
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
2017-10-03 21:07:17 +03:00
from thinc.i2v import HashEmbed, StaticVectors
from thinc.t2t import ExtractWindow, ParametricAttention
2017-10-27 15:39:30 +03:00
from thinc.t2v import Pooling, sum_pool
2017-10-03 21:07:17 +03:00
from thinc.misc import Residual
from thinc.misc import LayerNorm as LN
2017-05-06 21:38:12 +03:00
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
2017-10-27 15:39:30 +03:00
from thinc.api import FeatureExtracter, with_getitem, flatten_add_lengths
from thinc.api import uniqued, wrap, noop
2017-10-03 21:07:17 +03:00
from thinc.linear.linear import LinearModel
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array
from thinc.neural._lsuv import svd_orthonormal
2017-11-06 16:25:37 +03:00
from thinc.neural.optimizers import Adam
2017-10-03 21:07:17 +03:00
2017-05-08 12:36:37 +03:00
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
import thinc.extra.load_nlp
2017-10-27 15:39:30 +03:00
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
from .errors import Errors
2017-08-18 22:55:23 +03:00
from . import util
2017-05-04 14:31:40 +03:00
2017-10-03 21:29:58 +03:00
2017-09-22 17:38:22 +03:00
VECTORS_KEY = 'spacy_pretrained_vectors'
2017-05-08 12:36:37 +03:00
2017-10-27 15:39:30 +03:00
2017-10-31 04:00:26 +03:00
def cosine(vec1, vec2):
2017-10-31 13:40:46 +03:00
xp = get_array_module(vec1)
norm1 = xp.linalg.norm(vec1)
norm2 = xp.linalg.norm(vec2)
if norm1 == 0. or norm2 == 0.:
return 0
else:
return vec1.dot(vec2) / (norm1 * norm2)
2017-10-31 04:00:26 +03:00
def create_default_optimizer(ops, **cfg):
learn_rate = util.env_opt('learn_rate', 0.001)
beta1 = util.env_opt('optimizer_B1', 0.9)
2018-05-01 16:18:20 +03:00
beta2 = util.env_opt('optimizer_B2', 0.9)
eps = util.env_opt('optimizer_eps', 1e-12)
L2 = util.env_opt('L2_penalty', 1e-6)
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1,
beta2=beta2, eps=eps)
optimizer.max_grad_norm = max_grad_norm
2017-11-06 16:25:37 +03:00
optimizer.device = ops.device
return optimizer
2017-07-22 21:03:40 +03:00
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
2017-10-27 15:39:30 +03:00
2017-07-22 21:03:40 +03:00
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
2017-10-27 15:39:30 +03:00
2017-07-22 21:03:40 +03:00
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
if model.W is not None:
model.W.fill(0.)
return model
2017-08-18 22:55:23 +03:00
2017-07-22 21:03:40 +03:00
@layerize
def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array(LOWER) for doc in docs]
2017-07-22 21:03:40 +03:00
ops = Model.ops
2017-11-08 15:24:47 +03:00
# The dtype here matches what thinc is expecting -- which differs per
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
2017-07-22 21:03:40 +03:00
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape) + 1.
return (keys, vals, lengths), None
@layerize
def _preprocess_doc_bigrams(docs, drop=0.):
unigrams = [doc.to_array(LOWER) for doc in docs]
ops = Model.ops
bigrams = [ops.ngrams(2, doc_unis) for doc_unis in unigrams]
keys = [ops.xp.concatenate(feats) for feats in zip(unigrams, bigrams)]
keys, vals = zip(*[ops.xp.unique(k, return_counts=True) for k in keys])
# The dtype here matches what thinc is expecting -- which differs per
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
keys = ops.xp.concatenate(keys)
vals = ops.asarray(ops.xp.concatenate(vals), dtype='f')
2017-07-22 21:03:40 +03:00
return (keys, vals, lengths), None
@describe.on_data(_set_dimensions_if_needed,
lambda model, X, y: model.init_weights(model))
2017-05-08 12:36:37 +03:00
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
nP=Dimension("Maxout pieces"),
2017-05-08 12:36:37 +03:00
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
2017-05-08 12:36:37 +03:00
b=Biases("Bias vector",
lambda obj: (obj.nO, obj.nP)),
2017-10-28 19:45:14 +03:00
pad=Synapses("Pad",
lambda obj: (1, obj.nF, obj.nO, obj.nP),
lambda M, ops: ops.normal_init(M, 1.)),
2017-05-08 12:36:37 +03:00
d_W=Gradient("W"),
2017-10-28 19:45:14 +03:00
d_pad=Gradient("pad"),
2017-10-27 15:39:30 +03:00
d_b=Gradient("b"))
2017-05-08 12:36:37 +03:00
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
2017-05-08 12:36:37 +03:00
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
2017-05-08 12:36:37 +03:00
self.nI = nI
self.nF = nF
2017-10-20 13:14:52 +03:00
def begin_update(self, X, drop=0.):
Yf = self.ops.gemm(X,
self.W.reshape((self.nF*self.nO*self.nP, self.nI)), trans2=True)
2017-10-28 19:45:14 +03:00
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
Yf = self._add_padding(Yf)
2017-10-19 14:44:49 +03:00
2017-05-08 12:36:37 +03:00
def backward(dY_ids, sgd=None):
dY, ids = dY_ids
2017-10-28 19:45:14 +03:00
dY, ids = self._backprop_padding(dY, ids)
2017-05-08 12:36:37 +03:00
Xf = X[ids]
2017-10-27 13:18:36 +03:00
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
2017-10-20 13:14:52 +03:00
2017-10-19 19:42:11 +03:00
self.d_b += dY.sum(axis=0)
2017-10-27 13:18:36 +03:00
dY = dY.reshape((dY.shape[0], self.nO*self.nP))
Wopfi = self.W.transpose((1, 2, 0, 3))
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
Wopfi = Wopfi.reshape((self.nO*self.nP, self.nF * self.nI))
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO*self.nP)), Wopfi)
2017-10-28 19:45:14 +03:00
2017-10-27 13:18:36 +03:00
# Reuse the buffer
dWopfi = Wopfi; dWopfi.fill(0.)
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
2017-10-27 13:18:36 +03:00
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
# (o, p, f, i) --> (f, o, p, i)
self.d_W += dWopfi.transpose((2, 0, 1, 3))
2017-05-08 12:36:37 +03:00
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
2017-10-27 13:18:36 +03:00
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
2017-05-08 12:36:37 +03:00
return Yf, backward
2017-10-28 19:45:14 +03:00
def _add_padding(self, Yf):
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
2017-10-31 04:33:34 +03:00
return Yf_padded
2017-10-28 19:45:14 +03:00
def _backprop_padding(self, dY, ids):
2017-10-31 04:33:34 +03:00
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
2017-11-03 03:54:34 +03:00
mask = ids < 0.
mask = mask.sum(axis=1)
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
self.d_pad += d_pad.sum(axis=0)
2017-10-28 19:45:14 +03:00
return dY, ids
2017-05-08 12:36:37 +03:00
@staticmethod
def init_weights(model):
'''This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
'''
if (model.W**2).sum() != 0.:
return
2017-10-31 04:33:34 +03:00
ops = model.ops
xp = ops.xp
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
ids = ops.allocate((5000, model.nF), dtype='f')
ids += xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype='i')
tokvecs = ops.allocate((5000, model.nI), dtype='f')
tokvecs += xp.random.normal(loc=0., scale=1.,
size=tokvecs.size).reshape(tokvecs.shape)
def predict(ids, tokvecs):
2018-05-02 04:35:59 +03:00
# nS ids. nW tokvecs. Exclude the padding array.
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype='f')
# need nS vectors
2018-05-02 04:35:59 +03:00
hiddens = hiddens.reshape((hiddens.shape[0] * model.nF, model.nO * model.nP))
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
vectors += model.b
2018-05-02 04:35:59 +03:00
vectors = model.ops.asarray(vectors)
if model.nP >= 2:
return model.ops.maxout(vectors)[0]
else:
return vectors * (vectors >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
t_i = 0
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
2017-10-31 04:33:34 +03:00
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
2017-10-31 04:33:34 +03:00
model.W /= model.ops.xp.sqrt(var)
elif abs(mean) >= tol_mean:
model.b -= mean
else:
break
2017-05-08 15:24:43 +03:00
2017-09-22 17:38:36 +03:00
def link_vectors_to_models(vocab):
vectors = vocab.vectors
if vectors.name is None:
vectors.name = VECTORS_KEY
if vectors.data.size != 0:
print(
"Warning: Unnamed vectors -- this won't allow multiple vectors "
"models to be loaded. (Shape: (%d, %d))" % vectors.data.shape)
2017-09-22 17:38:36 +03:00
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = 0
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
thinc.extra.load_nlp.VECTORS[(ops.device, vectors.name)] = data
2017-08-18 22:55:23 +03:00
2017-10-27 15:39:30 +03:00
def Tok2Vec(width, embed_size, **kwargs):
pretrained_vectors = kwargs.get('pretrained_vectors', None)
2017-10-11 10:44:17 +03:00
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 2)
subword_features = kwargs.get('subword_features', True)
conv_depth = kwargs.get('conv_depth', 4)
2017-08-18 22:55:23 +03:00
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
2017-10-27 15:39:30 +03:00
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone,
'+': add, '*': reapply}):
norm = HashEmbed(width, embed_size, column=cols.index(NORM),
name='embed_norm')
if subword_features:
prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX),
name='embed_prefix')
suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX),
name='embed_suffix')
shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE),
name='embed_shape')
else:
2018-08-27 03:12:39 +03:00
prefix, suffix, shape = (None, None, None)
if pretrained_vectors is not None:
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
2017-09-22 17:38:36 +03:00
if subword_features:
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> LN(Maxout(width, width*5, pieces=3)), column=cols.index(ORTH))
else:
embed = uniqued(
(glove | norm)
>> LN(Maxout(width, width*2, pieces=3)), column=cols.index(ORTH))
elif subword_features:
2017-09-22 17:38:36 +03:00
embed = uniqued(
(norm | prefix | suffix | shape)
>> LN(Maxout(width, width*4, pieces=3)), column=cols.index(ORTH))
else:
embed = norm
2017-09-22 17:38:36 +03:00
2017-09-21 03:14:41 +03:00
convolution = Residual(
ExtractWindow(nW=1)
>> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces))
)
2017-09-18 23:00:05 +03:00
2017-09-22 17:38:36 +03:00
tok2vec = (
FeatureExtracter(cols)
2017-10-28 20:05:11 +03:00
>> with_flatten(
embed
>> convolution ** conv_depth, pad=conv_depth
2017-10-28 20:05:11 +03:00
)
2017-09-22 17:38:36 +03:00
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
2017-05-04 14:31:40 +03:00
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
2017-10-27 15:39:30 +03:00
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
2017-10-27 15:39:30 +03:00
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
2017-10-27 15:39:30 +03:00
parts.append(X[index:index + size])
index += size
return parts
2017-05-04 14:31:40 +03:00
def get_col(idx):
if idx < 0:
raise IndexError(Errors.E066.format(value=idx))
2017-10-27 15:39:30 +03:00
2017-05-04 14:31:40 +03:00
def forward(X, drop=0.):
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
2017-10-27 15:39:30 +03:00
2017-05-06 21:38:12 +03:00
def backward(y, sgd=None):
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
dX = ops.allocate(X.shape)
2017-05-06 21:38:12 +03:00
dX[:, idx] += y
return dX
2017-05-04 14:31:40 +03:00
2017-10-27 15:39:30 +03:00
return output, backward
2017-05-04 14:31:40 +03:00
2017-10-27 15:39:30 +03:00
return layerize(forward)
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
def doc2feats(cols=None):
2017-08-18 22:55:23 +03:00
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
2017-10-27 15:39:30 +03:00
def forward(docs, drop=0.):
2017-05-18 12:22:20 +03:00
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
2017-10-27 15:39:30 +03:00
2017-05-06 17:47:15 +03:00
model = layerize(forward)
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
model.cols = cols
2017-05-06 17:47:15 +03:00
return model
2017-05-06 21:38:12 +03:00
def print_shape(prefix):
def forward(X, drop=0.):
return X, lambda dX, **kwargs: dX
return layerize(forward)
2017-05-07 04:57:26 +03:00
2017-05-06 21:38:12 +03:00
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.):
tokens, attrs, vectors = tokens_attrs_vectors
2017-10-27 15:39:30 +03:00
2017-05-06 21:38:12 +03:00
def backward(d_output, sgd=None):
return (tokens, d_output)
2017-09-04 17:26:38 +03:00
2017-10-27 15:39:30 +03:00
return vectors, backward
2017-07-20 01:17:17 +03:00
@layerize
def logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
2017-10-27 15:39:30 +03:00
2017-07-20 01:17:17 +03:00
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
2017-10-27 15:39:30 +03:00
2017-07-20 01:17:17 +03:00
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
return model
2017-10-27 15:39:30 +03:00
2017-07-20 01:17:17 +03:00
@layerize
def preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
2017-10-27 13:16:41 +03:00
2017-08-18 22:55:23 +03:00
def getitem(i):
def getitem_fwd(X, drop=0.):
return X[i], None
return layerize(getitem_fwd)
2017-10-27 13:16:41 +03:00
2017-09-21 21:07:26 +03:00
def build_tagger_model(nr_class, **cfg):
2017-09-28 16:07:41 +03:00
embed_size = util.env_opt('embed_size', 7000)
2017-09-21 21:07:26 +03:00
if 'token_vector_width' in cfg:
token_vector_width = cfg['token_vector_width']
else:
2017-09-23 03:58:54 +03:00
token_vector_width = util.env_opt('token_vector_width', 128)
pretrained_vectors = cfg.get('pretrained_vectors')
subword_features = cfg.get('subword_features', True)
2017-08-18 22:55:23 +03:00
with Model.define_operators({'>>': chain, '+': add}):
if 'tok2vec' in cfg:
tok2vec = cfg['tok2vec']
else:
tok2vec = Tok2Vec(token_vector_width, embed_size,
subword_features=subword_features,
pretrained_vectors=pretrained_vectors)
softmax = with_flatten(Softmax(nr_class, token_vector_width))
2017-09-23 03:58:54 +03:00
model = (
tok2vec
>> softmax
2017-08-18 22:55:23 +03:00
)
model.nI = None
model.tok2vec = tok2vec
2017-11-03 13:22:01 +03:00
model.softmax = softmax
2017-08-18 22:55:23 +03:00
return model
@layerize
def SpacyVectors(docs, drop=0.):
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype='i')
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
2017-07-20 01:17:17 +03:00
def build_text_classifier(nr_class, width=64, **cfg):
depth = cfg.get('depth', 2)
2017-09-02 15:56:30 +03:00
nr_vector = cfg.get('nr_vector', 5000)
pretrained_dims = cfg.get('pretrained_dims', 0)
with Model.define_operators({'>>': chain, '+': add, '|': concatenate,
'**': clone}):
if cfg.get('low_data') and pretrained_dims:
2017-09-02 15:56:30 +03:00
model = (
SpacyVectors
>> flatten_add_lengths
2017-10-27 15:39:30 +03:00
>> with_getitem(0, Affine(width, pretrained_dims))
2017-09-02 15:56:30 +03:00
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
2017-07-20 01:17:17 +03:00
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width//2, nr_vector, column=2)
suffix = HashEmbed(width//2, nr_vector, column=3)
shape = HashEmbed(width//2, nr_vector, column=4)
trained_vectors = (
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID])
>> with_flatten(
2017-07-25 19:57:59 +03:00
uniqued(
2017-09-02 12:41:00 +03:00
(lower | prefix | suffix | shape)
2017-09-02 15:56:30 +03:00
>> LN(Maxout(width, width+(width//2)*3)),
2017-09-02 12:41:00 +03:00
column=0
)
2017-07-20 01:17:17 +03:00
)
)
if pretrained_dims:
static_vectors = (
SpacyVectors
>> with_flatten(Affine(width, pretrained_dims))
)
# TODO Make concatenate support lists
vectors = concatenate_lists(trained_vectors, static_vectors)
vectors_width = width*2
else:
vectors = trained_vectors
vectors_width = width
static_vectors = None
cnn_model = (
vectors
2017-09-02 15:56:30 +03:00
>> with_flatten(
LN(Maxout(width, vectors_width))
2017-09-02 15:56:30 +03:00
>> Residual(
2017-10-04 16:15:53 +03:00
(ExtractWindow(nW=1) >> LN(Maxout(width, width*3)))
) ** depth, pad=depth
2017-09-02 12:41:00 +03:00
)
2017-09-02 15:56:30 +03:00
>> flatten_add_lengths
>> ParametricAttention(width)
2017-07-25 19:57:59 +03:00
>> Pooling(sum_pool)
2017-09-02 15:56:30 +03:00
>> Residual(zero_init(Maxout(width, width)))
2017-07-25 19:57:59 +03:00
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = (
_preprocess_doc
>> LinearModel(nr_class)
)
model = (
2017-07-25 19:57:59 +03:00
(linear_model | cnn_model)
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
2017-07-20 01:17:17 +03:00
>> logistic
)
model.nO = nr_class
2017-07-20 01:17:17 +03:00
model.lsuv = False
return model
2017-10-27 15:39:30 +03:00
@layerize
def flatten(seqs, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
2017-10-27 15:39:30 +03:00
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
2017-10-27 15:39:30 +03:00
X = ops.flatten(seqs, pad=0)
return X, finish_update
2017-10-27 15:39:30 +03:00
def concatenate_lists(*layers, **kwargs): # pragma: no cover
"""Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
2017-10-27 15:39:30 +03:00
"""
if not layers:
return noop()
drop_factor = kwargs.get('drop_factor', 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
2017-10-27 15:39:30 +03:00
def concatenate_lists_fwd(Xs, drop=0.):
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype='i')
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
2017-10-27 15:39:30 +03:00
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
2017-10-27 15:39:30 +03:00
return ys, concatenate_lists_bwd
2017-10-27 15:39:30 +03:00
model = wrap(concatenate_lists_fwd, concat)
return model