* subword_features: Controls whether subword features are used in the
word embeddings. True by default (specifically, prefix, suffix and word
shape). Should be set to False for languages like Chinese and Japanese.
* conv_depth: Depth of the convolutional layers. Defaults to 4.
The parser.begin_training() method was rewritten in v2.1. The rewrite
introduced a regression, where if you added labels prior to
begin_training(), these labels were discarded. This patch fixes that.
Our JSON training format is annoying to work with, and we've wanted to
retire it for some time. In the meantime, we can at least add some
missing functions to make it easier to live with.
This patch adds a function that generates the JSON format from a list
of Doc objects, one per paragraph. This should be a convenient way to handle
a lot of data conversions: whatever format you have the source
information in, you can use it to setup a Doc object. This approach
should offer better future-proofing as well. Hopefully, we can steadily
rewrite code that is sensitive to the current data-format, so that it
instead goes through this function. Then when we change the data format,
we won't have such a problem.
I have added numbers in hindi lex_attrs.py file according to Indian numbering system(https://en.wikipedia.org/wiki/Indian_numbering_system) and here are there english translations:
'शून्य' => zero
'एक' => one
'दो' => two
'तीन' => three
'चार' => four
'पांच' => five
'छह' => six
'सात'=>seven
'आठ' => eight
'नौ' => nine
'दस' => ten
'ग्यारह' => eleven
'बारह' => twelve
'तेरह' => thirteen
'चौदह' => fourteen
'पंद्रह' => fifteen
'सोलह'=> sixteen
'सत्रह' => seventeen
'अठारह' => eighteen
'उन्नीस' => nineteen
'बीस' => twenty
'तीस' => thirty
'चालीस' => forty
'पचास' => fifty
'साठ' => sixty
'सत्तर' => seventy
'अस्सी' => eighty
'नब्बे' => ninety
'सौ' => hundred
'हज़ार' => thousand
'लाख' => hundred thousand
'करोड़' => ten million
'अरब' => billion
'खरब' => hundred billion
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Exceptions for single letter words ending sentence
Sentences ending in "i." (as in "... peka i."), "m." (as in "...än 2000 m."), should be tokenized as two separate tokens.
* Add test
## Description
Related issues: #2379 (should be fixed by separating model tests)
* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible
### Todo
- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests
### Types of change
enhancement, tests
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
This patch improves tokenizer speed by about 10%, and reduces memory usage in the `Vocab` by removing a redundant index. The `vocab._by_orth` and `vocab._by_hash` indexed on different data in v1, but in v2 the orth and the hash are identical.
The patch also fixes an uninitialized variable in the tokenizer, the `has_special` flag. This checks whether a chunk we're tokenizing triggers a special-case rule. If it does, then we avoid caching within the chunk. This check led to incorrectly rejecting some chunks from the cache.
With the `en_core_web_md` model, we now tokenize the IMDB train data at 503,104k words per second. Prior to this patch, we had 465,764k words per second.
Before switching to the regex library and supporting more languages, we had 1.3m words per second for the tokenizer. In order to recover the missing speed, we need to:
* Fix the variable-length lookarounds in the suffix, infix and `token_match` rules
* Improve the performance of the `token_match` regex
* Switch back from the `regex` library to the `re` library.
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
This jargon is not offencive but emotionally colored as funny due to its deviation from the norm for various reasons: immitating a dialect, deliberately wrong spelling emphasizing its low colloquial nature, obsolete form, foreign borrowing with native flections, etc.
Dmitry Briukhanov, Linguist & Pythonist
* Add helper function for reading in JSONL
* Add rule-based NER component
* Fix whitespace
* Add component to factories
* Add tests
* Add option to disable indent on json_dumps compat
Otherwise, reading JSONL back in line by line won't work
* Fix error code
List created by taking the 2000 top words from a Wikipedia dump and
removing everything that wasn't hiragana.
Tried going through kanji words and deciding what to keep but there were
too many obvious non-stopwords (東京 was in the top 500) and many other
words where it wasn't clear if they should be included or not.
<!--- Provide a general summary of your changes in the title. -->
## Description
This PR corrects the German lemma form for the word "Rang". Initially, the lemma form was "ringen", which is not correct, because it refers to the verb ("ringen") and not to the noun ("Rang").
### Types of change
The lemma form for "Rang" is corrected to "Rang", see also the [Duden](https://www.duden.de/rechtschreibung/Rang) entry.
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
<!--- Provide a general summary of your changes in the title. -->
Referring #2452, fixing displacy arrow directions to match the input.
## Description
The fix is simply replacing `direction is 'left'` with `direction == 'left'` to include the case `direction` is a `str` and not a `unicode`.
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Pass through "silent" kwarg to the wrapper in the spacy module init.
reference issue #2196
* Pass through "silent" kwarg to the wrapper in the spacy module init.
reference issue #2196
* contributor agreement
* issue_2385 add tests for iob_to_biluo converter function
* issue_2385 fix and modify iob_to_biluo function to accept either iob or biluo tags in cli.converter
* issue_2385 add test to fix b char bug
* add contributor agreement
* fill contributor agreement
## Description
Fix for issue #2361 :
replace &, <, >, " with &amp; , &lt; , &gt; , &quot; in before rendering svg
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
(As discussed in the comments to #2361)
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Simplify is_config() and normalize_string_keys()
* Use __in__ to avoid the nested _ands_ and _ors_.
* Dict comprehension directly tracks with the doc string
* Keep more basic loop in normalize_string_keys
* Whitespace
* Add logic to filter out warning IDs via environment variable
Usage: SPACY_WARNING_EXCLUDE=W001,W007
* Add warnings for empty vectors
* Add warning if no word vectors are used in .similarity methods
For example, if only tensors are available in small models – should hopefully clear up some confusion around this
* Capture warnings in tests
* Rename SPACY_WARNING_EXCLUDE to SPACY_WARNING_IGNORE
* Go back to using requests instead of urllib (closes#2320)
Fewer dependencies are good, but this one was simply causing too many other problems around SSL verification and Python 2/3 compatibility. requests is a popular enough package that it's okay for spaCy to depend on it – and this will hopefully make model downloads less flakey.
* Only download model if not installed (see #1456)
Use #egg=model==version to allow pip to check for existing installations. The download is only started if no installation matching the package/version is found. Fixes a long-standing inconvenience.
* Pass additional options to pip when installing model (resolves#1456)
Treat all additional arguments passed to the download command as pip options to allow user to customise the command. For example:
python -m spacy download en --user
* Add CLI option to enable installing model package dependencies
* Revert "Add CLI option to enable installing model package dependencies"
This reverts commit 9336ffe695.
* Update documentation
* Add Romanian lemmatizer lookup table.
Adapted from http://www.lexiconista.com/datasets/lemmatization/
by replacing cedillas with commas (ș and ț).
The original dataset is licensed under the Open Database License.
* Fix one blatant issue in the Romanian lemmatizer
* Romanian examples file
* Add ro_tokenizer in conftest
* Add Romanian lemmatizer test
* Update lex_attrs.py
Fixed spelling mistakes of some numbers (according to Brazilian Portuguese).
* Update lex_attrs.py
As requested, I've included the correct spelling for both Brazilian Portuguese and Portuguese Portuguese.
I will advise however, that the two are separated in the future. Brazilian Portuguese is a very different language from the original one, although most of the writing is unified, the way people talk in both countries is radically different. Keeping both languages as one may lead to bigger issues in the future, especially when it comes to spell checking.
* Add contraction forms of some common stopwords
All the stopwords added contain the apostrophe" ' "or " ’ ".
* Adds contributor agreement mauryaland
* Update mauryaland.md
* Port Japanese mecab tokenizer from v1
This brings the Mecab-based Japanese tokenization introduced in #1246 to
spaCy v2. There isn't a JapaneseTagger implementation yet, but POS tag
information from Mecab is stored in a token extension. A tag map is also
included.
As a reminder, Mecab is required because Universal Dependencies are
based on Unidic tags, and Janome doesn't support Unidic.
Things to check:
1. Is this the right way to use a token extension?
2. What's the right way to implement a JapaneseTagger? The approach in
#1246 relied on `tag_from_strings` which is just gone now. I guess the
best thing is to just try training spaCy's default Tagger?
-POLM
* Add tagging/make_doc and tests
* Remove erroneous lemma lookup år > åra in Swedish
* Add contributors agreement
* Add contrib agreement to correct directory
* Revert change to CONTRIBUTOR_AGREEMENT
* Remove incorrect lemma lookup gäng->gänga
In modern Swedish, "gäng" is mostly associated with "gang" or "group of people". The removed lemma lookup lemmatized it to the verb "thread".
* Add contrib agreement to correct directory
* Revert change to CONTRIBUTOR_AGREEMENT
* Add spacy.errors module
* Update deprecation and user warnings
* Replace errors and asserts with new error message system
* Remove redundant asserts
* Fix whitespace
* Add messages for print/util.prints statements
* Fix typo
* Fix typos
* Move CLI messages to spacy.cli._messages
* Add decorator to display error code with message
An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc.
* Remove unused link in spacy.about
* Update errors for invalid pipeline components
* Improve error for unknown factories
* Add displaCy warnings
* Update formatting consistency
* Move error message to spacy.errors
* Update errors and check if doc returned by component is None
This patch takes a step towards #1487 by introducing the
doc.retokenize() context manager, to handle merging spans, and soon
splitting tokens.
The idea is to do merging and splitting like this:
with doc.retokenize() as retokenizer:
for start, end, label in matches:
retokenizer.merge(doc[start : end], attrs={'ent_type': label})
The retokenizer accumulates the merge requests, and applies them
together at the end of the block. This will allow retokenization to be
more efficient, and much less error prone.
A retokenizer.split() function will then be added, to handle splitting a
single token into multiple tokens. These methods take `Span` and `Token`
objects; if the user wants to go directly from offsets, they can append
to the .merges and .splits lists on the retokenizer.
The doc.merge() method's behaviour remains unchanged, so this patch
should be 100% backwards incompatible (modulo bugs). Internally,
doc.merge() fixes up the arguments (to handle the various deprecated styles),
opens the retokenizer, and makes the single merge.
We can later start making deprecation warnings on direct calls to doc.merge(),
to migrate people to use of the retokenize context manager.
Changed python set to cpp stl set #2032
## Description
Changed python set to cpp stl set. CPP stl set works better due to the logarithmic run time of its methods. Finding minimum in the cpp set is done in constant time as opposed to the worst case linear runtime of python set. Operations such as find,count,insert,delete are also done in either constant and logarithmic time thus making cpp set a better option to manage vectors.
Reference : http://www.cplusplus.com/reference/set/set/
### Types of change
Enhancement for `Vectors` for faster initialising of word vectors(fasttext)
This patch addresses #1660, which was caused by keying all pre-trained
vectors with the same ID when telling Thinc how to refer to them. This
meant that if multiple models were loaded that had pre-trained vectors,
errors or incorrect behaviour resulted.
The vectors class now includes a .name attribute, which defaults to:
{nlp.meta['lang']_nlp.meta['name']}.vectors
The vectors name is set in the cfg of the pipeline components under the
key pretrained_vectors. This replaces the previous cfg key
pretrained_dims.
In order to make existing models compatible with this change, we check
for the pretrained_dims key when loading models in from_disk and
from_bytes, and add the cfg key pretrained_vectors if we find it.
This patch does a few smallish things that tighten up the training workflow a little, and allow memory use during training to be reduced by letting the GoldCorpus stream data properly.
Previously, the parser and entity recognizer read and saved labels as lists, with extra labels noted separately. Lists were used becaue ordering is very important, to ensure that the label-to-class mapping is stable.
We now manage labels as nested dictionaries, first keyed by the action, and then keyed by the label. Values are frequencies. The trick is, how do we save new labels? We need to make sure we iterate over these in the same order they're added. Otherwise, we'll get different class IDs, and the model's predictions won't make sense.
To allow stable sorting, we map the new labels to negative values. If we have two new labels, they'll be noted as having "frequency" -1 and -2. The next new label will then have "frequency" -3. When we sort by (frequency, label), we then get a stable sort.
Storing frequencies then allows us to make the next nice improvement. Previously we had to iterate over the whole training set, to pre-process it for the deprojectivisation. This led to storing the whole training set in memory. This was most of the required memory during training.
To prevent this, we now store the frequencies as we stream in the data, and deprojectivize as we go. Once we've built the frequencies, we can then apply a frequency cut-off when we decide how many classes to make.
Finally, to allow proper data streaming, we also have to have some way of shuffling the iterator. This is awkward if the training files have multiple documents in them. To solve this, the GoldCorpus class now writes the training data to disk in msgpack files, one per document. We can then shuffle the data by shuffling the paths.
This is a squash merge, as I made a lot of very small commits. Individual commit messages below.
* Simplify label management for TransitionSystem and its subclasses
* Fix serialization for new label handling format in parser
* Simplify and improve GoldCorpus class. Reduce memory use, write to temp dir
* Set actions in transition system
* Require thinc 6.11.1.dev4
* Fix error in parser init
* Add unicode declaration
* Fix unicode declaration
* Update textcat test
* Try to get model training on less memory
* Print json loc for now
* Try rapidjson to reduce memory use
* Remove rapidjson requirement
* Try rapidjson for reduced mem usage
* Handle None heads when projectivising
* Stream json docs
* Fix train script
* Handle projectivity in GoldParse
* Fix projectivity handling
* Add minibatch_by_words util from ud_train
* Minibatch by number of words in spacy.cli.train
* Move minibatch_by_words util to spacy.util
* Fix label handling
* More hacking at label management in parser
* Fix encoding in msgpack serialization in GoldParse
* Adjust batch sizes in parser training
* Fix minibatch_by_words
* Add merge_subtokens function to pipeline.pyx
* Register merge_subtokens factory
* Restore use of msgpack tmp directory
* Use minibatch-by-words in train
* Handle retokenization in scorer
* Change back-off approach for missing labels. Use 'dep' label
* Update NER for new label management
* Set NER tags for over-segmented words
* Fix label alignment in gold
* Fix label back-off for infrequent labels
* Fix int type in labels dict key
* Fix int type in labels dict key
* Update feature definition for 8 feature set
* Update ud-train script for new label stuff
* Fix json streamer
* Print the line number if conll eval fails
* Update children and sentence boundaries after deprojectivisation
* Export set_children_from_heads from doc.pxd
* Render parses during UD training
* Remove print statement
* Require thinc 6.11.1.dev6. Try adding wheel as install_requires
* Set different dev version, to flush pip cache
* Update thinc version
* Update GoldCorpus docs
* Remove print statements
* Fix formatting and links [ci skip]
Allows adding those components to the pipeline out-of-the-box if they're defined in a model's meta.json. Also allows usage as nlp.add_pipe(nlp.create_pipe('merge_entities')).
Allows adding those components to the pipeline out-of-the-box if they're defined in a model's meta.json. Also allows usage as nlp.add_pipe(nlp.create_pipe('merge_entities')).