Commit Graph

127 Commits

Author SHA1 Message Date
tamuhey
71909cdf22 Fix iss4278 (#4279)
* fix: len(tuple) == 2

* (#4278) add fail test

* add contributor's aggreement
2019-09-12 10:44:49 +02:00
Ines Montani
8ebc3711dc Fix bug in Parser.labels and add test (#4275) 2019-09-11 18:29:35 +02:00
Matthew Honnibal
c308cf3e3e
Merge branch 'master' into feature/lemmatizer 2019-08-25 13:52:27 +02:00
Matthew Honnibal
bb911e5f4e Fix #3830: 'subtok' label being added even if learn_tokens=False (#4188)
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Matthew Honnibal
bcd08f20af Merge changes from master 2019-08-21 14:18:52 +02:00
Ines Montani
f65e36925d Fix absolute imports and avoid importing from cli 2019-08-20 15:08:59 +02:00
Sofie Van Landeghem
0ba1b5eebc CLI scripts for entity linking (wikipedia & generic) (#4091)
* document token ent_kb_id

* document span kb_id

* update pipeline documentation

* prior and context weights as bool's instead

* entitylinker api documentation

* drop for both models

* finish entitylinker documentation

* small fixes

* documentation for KB

* candidate documentation

* links to api pages in code

* small fix

* frequency examples as counts for consistency

* consistent documentation about tensors returned by predict

* add entity linking to usage 101

* add entity linking infobox and KB section to 101

* entity-linking in linguistic features

* small typo corrections

* training example and docs for entity_linker

* predefined nlp and kb

* revert back to similarity encodings for simplicity (for now)

* set prior probabilities to 0 when excluded

* code clean up

* bugfix: deleting kb ID from tokens when entities were removed

* refactor train el example to use either model or vocab

* pretrain_kb example for example kb generation

* add to training docs for KB + EL example scripts

* small fixes

* error numbering

* ensure the language of vocab and nlp stay consistent across serialization

* equality with =

* avoid conflict in errors file

* add error 151

* final adjustements to the train scripts - consistency

* update of goldparse documentation

* small corrections

* push commit

* turn kb_creator into CLI script (wip)

* proper parameters for training entity vectors

* wikidata pipeline split up into two executable scripts

* remove context_width

* move wikidata scripts in bin directory, remove old dummy script

* refine KB script with logs and preprocessing options

* small edits

* small improvements to logging of EL CLI script
2019-08-13 15:38:59 +02:00
Matthew Honnibal
4632c597e7 Fix Pipe base class 2019-08-01 17:29:01 +02:00
Sofie Van Landeghem
7de3b129ab Resolve edge case when calling textcat.predict with empty doc (#4035)
* resolve edge case where no doc has tokens when calling textcat.predict

* more explicit value test
2019-07-30 14:58:01 +02:00
Matthew Honnibal
06eb428ed1 Make pipe base class a bit less presumptuous 2019-07-28 17:56:11 +02:00
Matthew Honnibal
16b5144095 Don't raise NotImplemented in Pipe.update 2019-07-28 17:54:11 +02:00
Matthew Honnibal
73e095923f 💫 Improve error message when model.from_bytes() dies (#4014)
* Improve error message when model.from_bytes() dies

When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,

e.g. "AttributeError: FunctionLayer has no attribute G"

This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.

I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>


Co-authored-by: Ines Montani <ines@ines.io>
2019-07-24 11:27:34 +02:00
svlandeg
4e7ec1ed31 return fix 2019-07-23 14:23:58 +02:00
svlandeg
400ff342cf replace assert's with custom error messages 2019-07-23 11:52:48 +02:00
svlandeg
20389e4553 format and bugfix 2019-07-22 15:08:17 +02:00
svlandeg
41fb5204ba output tensors as part of predict 2019-07-19 14:47:36 +02:00
svlandeg
21176517a7 have gold.links correspond exactly to doc.ents 2019-07-19 12:36:15 +02:00
svlandeg
e1213eaf6a use original gold object in get_loss function 2019-07-18 13:35:10 +02:00
svlandeg
ec55d2fccd filter training data beforehand (+black formatting) 2019-07-18 10:22:24 +02:00
svlandeg
a63d15a142 code cleanup 2019-07-15 17:36:43 +02:00
svlandeg
60f299374f set default context width 2019-07-15 12:03:09 +02:00
Sofie Van Landeghem
c4c21cb428 more friendly textcat errors (#3946)
* more friendly textcat errors with require_model and require_labels

* update thinc version with recent bugfix
2019-07-10 19:39:38 +02:00
Ines Montani
f2ea3e3ea2
Merge branch 'master' into feature/nel-wiki 2019-07-09 21:57:47 +02:00
Ines Montani
547464609d Remove merge_subtokens from parser postprocessing for now 2019-07-09 21:50:30 +02:00
svlandeg
668b17ea4a deuglify kb deserializer 2019-07-03 15:00:42 +02:00
svlandeg
8840d4b1b3 fix for context encoder optimizer 2019-07-03 13:35:36 +02:00
svlandeg
2d2dea9924 experiment with adding NER types to the feature vector 2019-06-29 14:52:36 +02:00
svlandeg
c664f58246 adding prior probability as feature in the model 2019-06-28 16:22:58 +02:00
svlandeg
68a0662019 context encoder with Tok2Vec + linking model instead of cosine 2019-06-28 08:29:31 +02:00
Ines Montani
37f744ca00 Auto-format [ci skip] 2019-06-26 14:48:09 +02:00
svlandeg
1de61f68d6 improve speed of prediction loop 2019-06-26 13:53:10 +02:00
svlandeg
58a5b40ef6 clean up duplicate code 2019-06-24 15:19:58 +02:00
svlandeg
b58bace84b small fixes 2019-06-24 10:55:04 +02:00
svlandeg
cc9ae28a52 custom error and warning messages 2019-06-19 12:35:26 +02:00
svlandeg
791327e3c5 Merge remote-tracking branch 'upstream/master' into feature/nel-wiki 2019-06-19 09:44:05 +02:00
svlandeg
a31648d28b further code cleanup 2019-06-19 09:15:43 +02:00
svlandeg
478305cd3f small tweaks and documentation 2019-06-18 18:38:09 +02:00
svlandeg
0d177c1146 clean up code, remove old code, move to bin 2019-06-18 13:20:40 +02:00
svlandeg
ffae7d3555 sentence encoder only (removing article/mention encoder) 2019-06-18 00:05:47 +02:00
svlandeg
b312f2d0e7 redo training data to be independent of KB and entity-level instead of doc-level 2019-06-14 15:55:26 +02:00
svlandeg
78dd3e11da write entity linking pipe to file and keep vocab consistent between kb and nlp 2019-06-13 16:25:39 +02:00
svlandeg
b12001f368 small fixes 2019-06-12 22:05:53 +02:00
svlandeg
6521cfa132 speeding up training 2019-06-12 13:37:05 +02:00
svlandeg
fe1ed432ef eval on dev set, varying combo's of prior and context scores 2019-06-11 11:40:58 +02:00
svlandeg
83dc7b46fd first tests with EL pipe 2019-06-10 21:25:26 +02:00
Matthew Honnibal
a931d72459 Add merge_subtokens as parser post-process. Re #3830 2019-06-07 20:40:41 +02:00
svlandeg
7de1ee69b8 training loop in proper pipe format 2019-06-07 15:55:10 +02:00
svlandeg
0486ccabfd introduce goldparse.links 2019-06-07 13:54:45 +02:00
svlandeg
a5c061f506 storing NEL training data in GoldParse objects 2019-06-07 12:58:42 +02:00
svlandeg
61f0e2af65 code cleanup 2019-06-06 20:22:14 +02:00
svlandeg
5c723c32c3 entity vectors in the KB + serialization of them 2019-06-05 18:29:18 +02:00
svlandeg
9abbd0899f separate entity encoder to get 64D descriptions 2019-06-05 00:09:46 +02:00
svlandeg
fb37cdb2d3 implementing el pipe in pipes.pyx (not tested yet) 2019-06-03 21:32:54 +02:00
svlandeg
dd691d0053 debugging 2019-05-17 17:44:11 +02:00
Sofie
a4a6bfa4e1
Merge branch 'master' into feature/el-framework 2019-03-26 11:00:02 +01:00
svlandeg
8814b9010d entity as one field instead of both ID and name 2019-03-25 18:10:41 +01:00
Matthew Honnibal
6c783f8045 Bug fixes and options for TextCategorizer (#3472)
* Fix code for bag-of-words feature extraction

The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).

* Support 'bow' architecture for TextCategorizer

This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.

* Fix size limits in train_textcat example

* Explain architectures better in docs
2019-03-23 16:44:44 +01:00
Ines Montani
06bf130890 💫 Add better and serializable sentencizer (#3471)
* Add better serializable sentencizer component

* Replace default factory

* Add tests

* Tidy up

* Pass test

* Update docs
2019-03-23 15:45:02 +01:00
svlandeg
5318ce88fa 'entity_linker' instead of 'el' 2019-03-22 13:55:10 +01:00
svlandeg
1ee0e78fd7 select candidate with highest prior probabiity 2019-03-22 11:36:45 +01:00
svlandeg
c593607ce2 minimal EL pipe 2019-03-22 11:36:45 +01:00
svlandeg
735fc2a735 annotate kb_id through ents in doc 2019-03-22 11:36:44 +01:00
svlandeg
d849eb2455 adding kb_id as field to token, el as nlp pipeline component 2019-03-22 11:34:46 +01:00
Ines Montani
278e9d2eb0 Merge branch 'master' into feature/lemmatizer 2019-03-16 13:44:22 +01:00
Ines Montani
cb5dbfa63a Tidy up references to n_threads and fix default 2019-03-15 16:24:26 +01:00
Ines Montani
7ba3a5d95c 💫 Make serialization methods consistent (#3385)
* Make serialization methods consistent

exclude keyword argument instead of random named keyword arguments and deprecation handling

* Update docs and add section on serialization fields
2019-03-10 19:16:45 +01:00
Matthew Honnibal
0f12082465 Refactor morphologizer 2019-03-09 22:54:59 +00:00
Matthew Honnibal
cc2b2dba14 Neaten set_morphology option on Tagger 2019-03-08 19:16:02 +01:00
Matthew Honnibal
afa227e25b Fix setter 2019-03-08 19:10:01 +01:00
Matthew Honnibal
b27bd42613 Fix compile error 2019-03-08 19:06:02 +01:00
Matthew Honnibal
c91577db02 Add set_morphology cfg option for Tagger 2019-03-08 19:03:17 +01:00
Ines Montani
296446a1c8
Tidy up and improve docs and docstrings (#3370)
<!--- Provide a general summary of your changes in the title. -->

## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs

### Types of change
enhancement, docs

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-08 11:42:26 +01:00
Matthew Honnibal
6b0008afc6 Clean up TextCategorizer slightly 2019-02-23 12:28:06 +01:00
Matthew Honnibal
ce1e4eace2 Default to former TextCategorizer model
* Keep TextCategorizer default model same as v2.0
* Add option 'architecture' that allows "simple_cnn" to switch to
simpler model.
* Add option exclusive_classes, defaulting to False. If set to True,
the model treats classes as mutually exclusive, i.e. only one class can
be true per instance.
2019-02-23 11:55:16 +01:00
Matthew Honnibal
a137e8b418 Fix Pipe.to_bytes() when model uninitialized
Closes #3289
2019-02-21 09:42:02 +01:00
Ines Montani
f146121092 💫 Make handling of [Pipe].labels consistent (#3273)
* Make handling of [Pipe].labels consistent

* Un-xfail passing test

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Update spacy/tests/pipeline/test_pipe_methods.py

Co-Authored-By: ines <ines@ines.io>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Move error message to spacy.errors

* Fix textcat labels and test

* Make EntityRuler.labels return tuple as well
2019-02-15 06:03:19 +11:00
Ines Montani
a9f8d17632
💫 Break up large pipeline.pyx (#3246)
* Break up large pipeline.pyx

* Merge some components back together

* Fix typo
2019-02-10 12:14:51 +01:00