Commit Graph

489 Commits

Author SHA1 Message Date
svlandeg
3ade455fd3 formatting 2020-06-04 16:09:55 +02:00
Ines Montani
810fce3bb1 Merge branch 'develop' into master-tmp 2020-06-03 14:36:59 +02:00
svlandeg
eac12cbb77 make dropout in embed layers configurable 2020-06-03 11:50:16 +02:00
svlandeg
e0f9f448f1 remove Tensorizer 2020-06-01 23:38:48 +02:00
Adriane Boyd
a005ccd6d7 Preserve _SP when filtering tag map in Tagger
To allow "SP" as a tag (for Chinese OntoNotes), preserve "_SP" if
present as the reference `SPACE` POS in the tag map in
`Tagger.begin_training()`.
2020-05-31 19:57:54 +02:00
Ines Montani
1a15896ba9 unicode -> str consistency [ci skip] 2020-05-24 18:51:10 +02:00
Ines Montani
5d3806e059 unicode -> str consistency 2020-05-24 17:20:58 +02:00
Matthew Honnibal
93c4d13588
Merge pull request from lfiedler/issue-5230
Fix ResourceWarnings during unittest
2020-05-22 00:31:07 +02:00
Matthw Honnibal
bc94fdabd0 Fix begin_training 2020-05-21 20:46:21 +02:00
Matthw Honnibal
f075655deb Fix shape inference in begin_training 2020-05-21 19:26:29 +02:00
Ines Montani
24f72c669c Merge branch 'develop' into master-tmp 2020-05-21 18:39:06 +02:00
Sofie Van Landeghem
7f5715a081
Various fixes to NEL functionality, Example class etc ()
* setting KB in the EL constructor, similar to how the model is passed on

* removing wikipedia example files - moved to projects

* throw an error when nlp.update is called with 2 positional arguments

* rewriting the config logic in create pipe to accomodate for other objects (e.g. KB) in the config

* update config files with new parameters

* avoid training pipeline components that don't have a model (like sentencizer)

* various small fixes + UX improvements

* small fixes

* set thinc to 8.0.0a9 everywhere

* remove outdated comment
2020-05-20 11:41:12 +02:00
Sofie Van Landeghem
f00de445dd
default models defined in component decorator ()
* move defaults to pipeline and use in component decorator

* black formatting

* relative import
2020-05-19 16:20:03 +02:00
Sofie Van Landeghem
0d94737857
Feature toggle_pipes ()
* make disable_pipes deprecated in favour of the new toggle_pipes

* rewrite disable_pipes statements

* update documentation

* remove bin/wiki_entity_linking folder

* one more fix

* remove deprecated link to documentation

* few more doc fixes

* add note about name change to the docs

* restore original disable_pipes

* small fixes

* fix typo

* fix error number to W096

* rename to select_pipes

* also make changes to the documentation

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-18 22:27:10 +02:00
Matthew Honnibal
333b1a308b
Adapt parser and NER for transformers ()
* Draft layer for BILUO actions

* Fixes to biluo layer

* WIP on BILUO layer

* Add tests for BILUO layer

* Format

* Fix transitions

* Update test

* Link in the simple_ner

* Update BILUO tagger

* Update __init__

* Import simple_ner

* Update test

* Import

* Add files

* Add config

* Fix label passing for BILUO and tagger

* Fix label handling for simple_ner component

* Update simple NER test

* Update config

* Hack train script

* Update BILUO layer

* Fix SimpleNER component

* Update train_from_config

* Add biluo_to_iob helper

* Add IOB layer

* Add IOBTagger model

* Update biluo layer

* Update SimpleNER tagger

* Update BILUO

* Read random seed in train-from-config

* Update use of normal_init

* Fix normalization of gradient in SimpleNER

* Update IOBTagger

* Remove print

* Tweak masking in BILUO

* Add dropout in SimpleNER

* Update thinc

* Tidy up simple_ner

* Fix biluo model

* Unhack train-from-config

* Update setup.cfg and requirements

* Add tb_framework.py for parser model

* Try to avoid memory leak in BILUO

* Move ParserModel into spacy.ml, avoid need for subclass.

* Use updated parser model

* Remove incorrect call to model.initializre in PrecomputableAffine

* Update parser model

* Avoid divide by zero in tagger

* Add extra dropout layer in tagger

* Refine minibatch_by_words function to avoid oom

* Fix parser model after refactor

* Try to avoid div-by-zero in SimpleNER

* Fix infinite loop in minibatch_by_words

* Use SequenceCategoricalCrossentropy in Tagger

* Fix parser model when hidden layer

* Remove extra dropout from tagger

* Add extra nan check in tagger

* Fix thinc version

* Update tests and imports

* Fix test

* Update test

* Update tests

* Fix tests

* Fix test

Co-authored-by: Ines Montani <ines@ines.io>
2020-05-18 22:23:33 +02:00
Adriane Boyd
bc39f97e11 Simplify warnings 2020-04-28 13:37:37 +02:00
Matthew Honnibal
b2ef6100af
Only run backprop once when shared tok2vec weights ()
Previously, pipelines with shared tok2vec weights would call the
tok2vec backprop callback multiple times, once for each pipeline
component. This caused errors for PyTorch, and was inefficient.

Instead, accumulate the gradient for all but one component, and just
call the callback once.
2020-04-21 19:30:41 +02:00
Leander Fiedler
a3401b1194 issue5230 changed reference to function to anonymous function 2020-04-15 21:52:52 +02:00
Leander Fiedler
cef0c909b9 issue5230 changed reference to function to anonymous function 2020-04-15 19:28:33 +02:00
adrianeboyd
ae4af52ce7
Add ideographic stops to sentencizer ()
Add ideographic half- and fullwidth full stops to default sentencizer
punctuation.
2020-04-08 12:58:39 +02:00
Leander Fiedler
71cc903d65 issue5230: replaced open statements on path objects so that serialization still works an files are closed 2020-04-06 20:30:41 +02:00
adrianeboyd
b71a11ff6d
Update morphologizer ()
* Add pos and morph scoring to Scorer

Add pos, morph, and morph_per_type to `Scorer`. Report pos and morph
accuracy in `spacy evaluate`.

* Update morphologizer for v3

* switch to tagger-based morphologizer
* use `spacy.HashCharEmbedCNN` for morphologizer defaults
* add `Doc.is_morphed` flag

* Add morphologizer to train CLI

* Add basic morphologizer pipeline tests

* Add simple morphologizer training example

* Remove subword_features from CharEmbed models

Remove `subword_features` argument from `spacy.HashCharEmbedCNN.v1` and
`spacy.HashCharEmbedBiLSTM.v1` since in these cases `subword_features`
is always `False`.

* Rename setting in morphologizer example

Use `with_pos_tags` instead of `without_pos_tags`.

* Fix kwargs for spacy.HashCharEmbedBiLSTM.v1

* Remove defaults for spacy.HashCharEmbedBiLSTM.v1

Remove default `nM/nC` for `spacy.HashCharEmbedBiLSTM.v1`.

* Set random seed for textcat overfitting test
2020-04-02 14:46:32 +02:00
Sofie Van Landeghem
ab59f3124e
fix NEL overfitting test for GPU () 2020-04-02 10:32:52 +02:00
Sofie Van Landeghem
311133e579
Train textcat with config ()
* bring back default build_text_classifier method

* remove _set_dims_ hack in favor of proper dim inference

* add tok2vec initialize to unit test

* small fixes

* add unit test for various textcat config settings

* logistic output layer does not have nO

* fix window_size setting

* proper fix

* fix W initialization

* Update textcat training example

* Use ml_datasets
* Convert training data to `Example` format
* Use `n_texts` to set proportionate dev size

* fix _init renaming on latest thinc

* avoid setting a non-existing dim

* update to thinc==8.0.0a2

* add BOW and CNN defaults for easy testing

* various experiments with train_textcat script, fix softmax activation in textcat bow

* allow textcat train script to work on other datasets as well

* have dataset as a parameter

* train textcat from config, with example config

* add config for training textcat

* formatting

* fix exclusive_classes

* fixing BOW for GPU

* bump thinc to 8.0.0a3 (not published yet so CI will fail)

* add in link_vectors_to_models which got deleted

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2020-03-29 19:40:36 +02:00
Sofie Van Landeghem
9b412516e7
Fixing pickling of the parser ()
* fix __reduce__ for pickling parser

* setting the move object as 'state' during pickling

* unskip test_issue4725 - works again
2020-03-27 19:35:26 +01:00
Ines Montani
46568f40a7 Merge branch 'master' into tmp/sync 2020-03-26 13:38:14 +01:00
Ines Montani
828acffc12 Tidy up and auto-format 2020-03-25 12:28:12 +01:00
Sofie Van Landeghem
5847be6022
Tok2Vec: extract-embed-encode ()
* avoid changing original config

* fix elif structure, batch with just int crashes otherwise

* tok2vec example with doc2feats, encode and embed architectures

* further clean up MultiHashEmbed

* further generalize Tok2Vec to work with extract-embed-encode parts

* avoid initializing the charembed layer with Docs (for now ?)

* small fixes for bilstm config (still does not run)

* rename to core layer

* move new configs

* walk model to set nI instead of using core ref

* fix senter overfitting test to be more similar to the training data (avoid flakey behaviour)
2020-03-08 13:23:18 +01:00
adrianeboyd
c95ce96c44
Update sentence recognizer ()
* Update sentence recognizer

* rename `sentrec` to `senter`
* use `spacy.HashEmbedCNN.v1` by default
* update to follow `Tagger` modifications
* remove component methods that can be inherited from `Tagger`
* add simple initialization and overfitting pipeline tests

* Update serialization test for senter
2020-03-06 14:45:02 +01:00
Sofie Van Landeghem
6ac9fc0619
Unit test for NEL functionality ()
* empty begin_training for sentencizer

* overfitting unit test for entity linker

* fixed NEL IO by storing the entity_vector_length in the cfg
2020-03-06 14:42:23 +01:00
Ines Montani
b0cfab317f Merge branch 'develop' into refactor/simplify-warnings 2020-03-04 16:38:55 +01:00
Sofie Van Landeghem
c6b12ab02a
Bugfix/get doc ()
* new (broken) unit test

* fixing get_doc method
2020-03-02 11:49:28 +01:00
Ines Montani
648f61d077
Tidy up compiler flags and imports () 2020-03-02 11:48:10 +01:00
Ines Montani
37691e6d5d Simplify warnings 2020-02-28 12:20:23 +01:00
Ines Montani
5da3ad682a Tidy up and auto-format 2020-02-28 11:57:41 +01:00
Sofie Van Landeghem
06f0a8daa0
Default settings to configurations ()
* fix grad_clip naming

* cleaning up pretrained_vectors out of cfg

* further refactoring Model init's

* move Model building out of pipes

* further refactor to require a model config when creating a pipe

* small fixes

* making cfg in nn_parser more consistent

* fixing nr_class for parser

* fixing nn_parser's nO

* fix printing of loss

* architectures in own file per type, consistent naming

* convenience methods default_tagger_config and default_tok2vec_config

* let create_pipe access default config if available for that component

* default_parser_config

* move defaults to separate folder

* allow reading nlp from package or dir with argument 'name'

* architecture spacy.VocabVectors.v1 to read static vectors from file

* cleanup

* default configs for nel, textcat, morphologizer, tensorizer

* fix imports

* fixing unit tests

* fixes and clean up

* fixing defaults, nO, fix unit tests

* restore parser IO

* fix IO

* 'fix' serialization test

* add *.cfg to manifest

* fix example configs with additional arguments

* replace Morpohologizer with Tagger

* add IO bit when testing overfitting of tagger (currently failing)

* fix IO - don't initialize when reading from disk

* expand overfitting tests to also check IO goes OK

* remove dropout from HashEmbed to fix Tagger performance

* add defaults for sentrec

* update thinc

* always pass a Model instance to a Pipe

* fix piped_added statement

* remove obsolete W029

* remove obsolete errors

* restore byte checking tests (work again)

* clean up test

* further test cleanup

* convert from config to Model in create_pipe

* bring back error when component is not initialized

* cleanup

* remove calls for nlp2.begin_training

* use thinc.api in imports

* allow setting charembed's nM and nC

* fix for hardcoded nM/nC + unit test

* formatting fixes

* trigger build
2020-02-27 18:42:27 +01:00
Ines Montani
e3f40a6a0f Tidy up and auto-format 2020-02-18 15:38:18 +01:00
Ines Montani
de11ea753a Merge branch 'master' into develop 2020-02-18 14:47:23 +01:00
Kabir Khan
f6ed07b85c
Use nlp.pipe in EntityRuler for phrase patterns in add_patterns ()
* Fix ent_ids and labels properties when id attribute used in patterns

* use set for labels

* sort end_ids for comparison in entity_ruler tests

* fixing entity_ruler ent_ids test

* add to set

* Run make_doc optimistically if using phrase matcher patterns.

* remove unused coveragerc I was testing with

* format

* Refactor EntityRuler.add_patterns to use nlp.pipe for phrase patterns. Improves speed substantially.

* Removing old add_patterns function

* Fixing spacing

* Make sure token_patterns loaded as well, before generator was being emptied in from_disk
2020-02-16 18:17:47 +01:00
Sofie Van Landeghem
72c964bcf4
define pretrained_dims which is used by build_text_classifier () 2020-02-16 17:21:17 +01:00
Sofie Van Landeghem
cabd60fa1e
Small fixes to as_example ()
* label in span not writable anymore

* Revert "label in span not writable anymore"

This reverts commit ab442338c8.

* fixing yield - remove redundant list
2020-02-03 13:02:12 +01:00
Sofie Van Landeghem
569cc98982
Update spaCy for thinc 8.0.0 ()
* Add load_from_config function

* Add train_from_config script

* Merge configs and expose via spacy.config

* Fix script

* Suggest create_evaluation_callback

* Hard-code for NER

* Fix errors

* Register command

* Add TODO

* Update train-from-config todos

* Fix imports

* Allow delayed setting of parser model nr_class

* Get train-from-config working

* Tidy up and fix scores and printing

* Hide traceback if cancelled

* Fix weighted score formatting

* Fix score formatting

* Make output_path optional

* Add Tok2Vec component

* Tidy up and add tok2vec_tensors

* Add option to copy docs in nlp.update

* Copy docs in nlp.update

* Adjust nlp.update() for set_annotations

* Don't shuffle pipes in nlp.update, decruft

* Support set_annotations arg in component update

* Support set_annotations in parser update

* Add get_gradients method

* Add get_gradients to parser

* Update errors.py

* Fix problems caused by merge

* Add _link_components method in nlp

* Add concept of 'listeners' and ControlledModel

* Support optional attributes arg in ControlledModel

* Try having tok2vec component in pipeline

* Fix tok2vec component

* Fix config

* Fix tok2vec

* Update for Example

* Update for Example

* Update config

* Add eg2doc util

* Update and add schemas/types

* Update schemas

* Fix nlp.update

* Fix tagger

* Remove hacks from train-from-config

* Remove hard-coded config str

* Calculate loss in tok2vec component

* Tidy up and use function signatures instead of models

* Support union types for registry models

* Minor cleaning in Language.update

* Make ControlledModel specifically Tok2VecListener

* Fix train_from_config

* Fix tok2vec

* Tidy up

* Add function for bilstm tok2vec

* Fix type

* Fix syntax

* Fix pytorch optimizer

* Add example configs

* Update for thinc describe changes

* Update for Thinc changes

* Update for dropout/sgd changes

* Update for dropout/sgd changes

* Unhack gradient update

* Work on refactoring _ml

* Remove _ml.py module

* WIP upgrade cli scripts for thinc

* Move some _ml stuff to util

* Import link_vectors from util

* Update train_from_config

* Import from util

* Import from util

* Temporarily add ml.component_models module

* Move ml methods

* Move typedefs

* Update load vectors

* Update gitignore

* Move imports

* Add PrecomputableAffine

* Fix imports

* Fix imports

* Fix imports

* Fix missing imports

* Update CLI scripts

* Update spacy.language

* Add stubs for building the models

* Update model definition

* Update create_default_optimizer

* Fix import

* Fix comment

* Update imports in tests

* Update imports in spacy.cli

* Fix import

* fix obsolete thinc imports

* update srsly pin

* from thinc to ml_datasets for example data such as imdb

* update ml_datasets pin

* using STATE.vectors

* small fix

* fix Sentencizer.pipe

* black formatting

* rename Affine to Linear as in thinc

* set validate explicitely to True

* rename with_square_sequences to with_list2padded

* rename with_flatten to with_list2array

* chaining layernorm

* small fixes

* revert Optimizer import

* build_nel_encoder with new thinc style

* fixes using model's get and set methods

* Tok2Vec in component models, various fixes

* fix up legacy tok2vec code

* add model initialize calls

* add in build_tagger_model

* small fixes

* setting model dims

* fixes for ParserModel

* various small fixes

* initialize thinc Models

* fixes

* consistent naming of window_size

* fixes, removing set_dropout

* work around Iterable issue

* remove legacy tok2vec

* util fix

* fix forward function of tok2vec listener

* more fixes

* trying to fix PrecomputableAffine (not succesful yet)

* alloc instead of allocate

* add morphologizer

* rename residual

* rename fixes

* Fix predict function

* Update parser and parser model

* fixing few more tests

* Fix precomputable affine

* Update component model

* Update parser model

* Move backprop padding to own function, for test

* Update test

* Fix p. affine

* Update NEL

* build_bow_text_classifier and extract_ngrams

* Fix parser init

* Fix test add label

* add build_simple_cnn_text_classifier

* Fix parser init

* Set gpu off by default in example

* Fix tok2vec listener

* Fix parser model

* Small fixes

* small fix for PyTorchLSTM parameters

* revert my_compounding hack (iterable fixed now)

* fix biLSTM

* Fix uniqued

* PyTorchRNNWrapper fix

* small fixes

* use helper function to calculate cosine loss

* small fixes for build_simple_cnn_text_classifier

* putting dropout default at 0.0 to ensure the layer gets built

* using thinc util's set_dropout_rate

* moving layer normalization inside of maxout definition to optimize dropout

* temp debugging in NEL

* fixed NEL model by using init defaults !

* fixing after set_dropout_rate refactor

* proper fix

* fix test_update_doc after refactoring optimizers in thinc

* Add CharacterEmbed layer

* Construct tagger Model

* Add missing import

* Remove unused stuff

* Work on textcat

* fix test (again :)) after optimizer refactor

* fixes to allow reading Tagger from_disk without overwriting dimensions

* don't build the tok2vec prematuraly

* fix CharachterEmbed init

* CharacterEmbed fixes

* Fix CharacterEmbed architecture

* fix imports

* renames from latest thinc update

* one more rename

* add initialize calls where appropriate

* fix parser initialization

* Update Thinc version

* Fix errors, auto-format and tidy up imports

* Fix validation

* fix if bias is cupy array

* revert for now

* ensure it's a numpy array before running bp in ParserStepModel

* no reason to call require_gpu twice

* use CupyOps.to_numpy instead of cupy directly

* fix initialize of ParserModel

* remove unnecessary import

* fixes for CosineDistance

* fix device renaming

* use refactored loss functions (Thinc PR 251)

* overfitting test for tagger

* experimental settings for the tagger: avoid zero-init and subword normalization

* clean up tagger overfitting test

* use previous default value for nP

* remove toy config

* bringing layernorm back (had a bug - fixed in thinc)

* revert setting nP explicitly

* remove setting default in constructor

* restore values as they used to be

* add overfitting test for NER

* add overfitting test for dep parser

* add overfitting test for textcat

* fixing init for linear (previously affine)

* larger eps window for textcat

* ensure doc is not None

* Require newer thinc

* Make float check vaguer

* Slop the textcat overfit test more

* Fix textcat test

* Fix exclusive classes for textcat

* fix after renaming of alloc methods

* fixing renames and mandatory arguments (staticvectors WIP)

* upgrade to thinc==8.0.0.dev3

* refer to vocab.vectors directly instead of its name

* rename alpha to learn_rate

* adding hashembed and staticvectors dropout

* upgrade to thinc 8.0.0.dev4

* add name back to avoid warning W020

* thinc dev4

* update srsly

* using thinc 8.0.0a0 !

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 17:06:46 +01:00
adrianeboyd
a938566b62 Fix Sentencizer.pipe() for empty doc () 2020-01-28 11:36:49 +01:00
adrianeboyd
199d89943e Add as_example to Sentencizer pipe() () 2020-01-22 15:40:31 +01:00
Kabir Khan
b9afcd56e3 Fix ent_ids and labels properties when id attribute used in patterns ()
* Fix ent_ids and labels properties when id attribute used in patterns

* use set for labels

* sort end_ids for comparison in entity_ruler tests

* fixing entity_ruler ent_ids test

* add to set
2020-01-16 02:01:31 +01:00
Sofie Van Landeghem
7b96a5e10f Reduce mem usage in training Entity Linker ()
* move nlp processing for el pipe to batch training instead of preprocessing

* adding dev eval back in, and limit in articles instead of entities

* use pipe whenever possible

* few more small doc changes

* access dev data through generator

* tqdm description

* small fixes

* update documentation
2020-01-06 14:59:50 +01:00
Ines Montani
a892821c51 More formatting changes 2019-12-25 17:59:52 +01:00
Ines Montani
db55577c45
Drop Python 2.7 and 3.5 ()
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
Ines Montani
947dba7141 Merge branch 'master' into develop 2019-12-21 19:04:43 +01:00
Ines Montani
cb4145adc7 Tidy up and auto-format 2019-12-21 19:04:17 +01:00
Ines Montani
158b98a3ef Merge branch 'master' into develop 2019-12-21 18:55:03 +01:00
Sofie Van Landeghem
557dcf5659 NEL requires sentences to be set () 2019-12-13 15:55:18 +01:00
Sofie Van Landeghem
5355b0038f Update EL example ()
* update EL example script after sentence-central refactor

* version bump

* set incl_prior to False for quick demo purposes

* clean up
2019-12-11 18:19:42 +01:00
Sofie Van Landeghem
780d43aac7 fix bug in EL predict () 2019-12-06 19:18:14 +01:00
adrianeboyd
b841d3fe75 Add a tagger-based SentenceRecognizer ()
* Add sent_starts to GoldParse

* Add SentTagger pipeline component

Add `SentTagger` pipeline component as a subclass of `Tagger`.

* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
  * S (1): token at beginning of sentence
  * I (0): all other sentence positions
* Sets `token.sent_start` values

* Add sentence segmentation to Scorer

Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.

* Add sentence segmentation to CLI evaluate

* Add senttagger metrics/scoring to train CLI

* Rename SentTagger to SentenceRecognizer

* Add SentenceRecognizer to spacy.pipes imports

* Add SentenceRecognizer serialization test

* Shorten component name to sentrec

* Remove duplicates from train CLI output metrics
2019-11-28 11:10:07 +01:00
adrianeboyd
48ea2e8d0f Restructure Sentencizer to follow Pipe API ()
* Restructure Sentencizer to follow Pipe API

Restructure Sentencizer to follow Pipe API so that it can be scored with
`nlp.evaluate()`.

* Add Sentencizer pipe() test
2019-11-27 16:33:34 +01:00
adrianeboyd
392c4880d9 Restructure Example with merged sents as default ()
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Restructure Example with merged sents as default

An `Example` now includes a single `TokenAnnotation` that includes all
the information from one `Doc` (=JSON `paragraph`). If required, the
individual sentences can be returned as a list of examples with
`Example.split_sents()` with no raw text available.

* Input/output a single `Example.token_annotation`

* Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries

* Replace `Example.merge_sents()` with `Example.split_sents()`

* Modify components to use a single `Example.token_annotation`

  * Pipeline components
  * conllu2json converter

* Rework/rename `add_token_annotation()` and `add_doc_annotation()` to
`set_token_annotation()` and `set_doc_annotation()`, functions that set
rather then appending/extending.

* Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse`

* Add getters to `TokenAnnotation` to supply default values when a given
attribute is not available

* `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only
applied on single examples, so the `GoldParse` is returned saved in the
provided `Example` rather than creating a new `Example` with no other
internal annotation

* Update tests for API changes and `merge_sents()` vs. `split_sents()`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Fix make_orth_variants()

Fix bug in make_orth_variants() related to conversion from multiple to
one TokenAnnotation per Example.

* Add basic test for make_orth_variants()

* Replace try/except with conditionals

* Replace default morph value with set
2019-11-25 16:03:28 +01:00
adrianeboyd
44829950ba Fix Example details for train CLI / pipeline components ()
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Update test for ignore_misaligned
2019-11-23 14:32:15 +01:00
GuiGel
8f7ab70870 Bugfix/fix entity ruler from disk ()
* fix EntityRuler from_disk bug

* add contributor file

* Test EntityRuler PhraseMatcher deserialization ()

* newline at end of file

* fix copy paste error

* serializing the EntityRuler by itself

* Add unicode declarations for Python 2 and auto-format
2019-11-21 16:26:37 +01:00
adrianeboyd
054df5d90a Add error for non-string labels ()
Add error when attempting to add non-string labels to `Tagger` or
`TextCategorizer`.
2019-11-21 16:24:10 +01:00
Sofie Van Landeghem
e48a09df4e Example class for training data ()
* OrigAnnot class instead of gold.orig_annot list of zipped tuples

* from_orig to replace from_annot_tuples

* rename to RawAnnot

* some unit tests for GoldParse creation and internal format

* removing orig_annot and switching to lists instead of tuple

* rewriting tuples to use RawAnnot (+ debug statements, WIP)

* fix pop() changing the data

* small fixes

* pop-append fixes

* return RawAnnot for existing GoldParse to have uniform interface

* clean up imports

* fix merge_sents

* add unit test for 4402 with new structure (not working yet)

* introduce DocAnnot

* typo fixes

* add unit test for merge_sents

* rename from_orig to from_raw

* fixing unit tests

* fix nn parser

* read_annots to produce text, doc_annot pairs

* _make_golds fix

* rename golds_to_gold_annots

* small fixes

* fix encoding

* have golds_to_gold_annots use DocAnnot

* missed a spot

* merge_sents as function in DocAnnot

* allow specifying only part of the token-level annotations

* refactor with Example class + underlying dicts

* pipeline components to work with Example objects (wip)

* input checking

* fix yielding

* fix calls to update

* small fixes

* fix scorer unit test with new format

* fix kwargs order

* fixes for ud and conllu scripts

* fix reading data for conllu script

* add in proper errors (not fixed numbering yet to avoid merge conflicts)

* fixing few more small bugs

* fix EL script
2019-11-11 17:35:27 +01:00
adrianeboyd
f2bfaa1b38 Filter subtoken matches in merge_subtokens() ()
The `Matcher` in `merge_subtokens()` returns all possible subsequences
of `subtok`, so for sequences of two or more subtoks it's necessary to
filter the matches so that the retokenizer is only merging the longest
matches with no overlapping spans.
2019-10-28 15:40:28 +01:00
Matthew Honnibal
f8d740bfb1
Fix --gold-preproc train cli command ()
* Fix get labels for textcat

* Fix char_embed for gpu

* Revert "Fix char_embed for gpu"

This reverts commit 055b9a9e85.

* Fix passing of cats in gold.pyx

* Revert "Match pop with append for training format ()"

This reverts commit 8e7414dace.

* Fix popping gold parses

* Fix handling of cats in gold tuples

* Fix name

* Fix ner_multitask_objective script

* Add test for 4402
2019-10-27 21:58:50 +01:00
Sofie Van Landeghem
8e7414dace Match pop with append for training format ()
* trying to fix script - not succesful yet

* match pop() with extend() to avoid changing the data

* few more pop-extend fixes

* reinsert deleted print statement

* fix print statement

* add last tested version

* append instead of extend

* add in few comments

* quick fix for 4402 + unit test

* fixing number of docs (not counting cats)

* more fixes

* fix len

* print tmp file instead of using data from examples dir

* print tmp file instead of using data from examples dir (2)
2019-10-27 16:01:32 +01:00
Ines Montani
a9c6104047 Component decorator and component analysis ()
* Add work in progress

* Update analysis helpers and component decorator

* Fix porting of docstrings for Python 2

* Fix docstring stuff on Python 2

* Support meta factories when loading model

* Put auto pipeline analysis behind flag for now

* Analyse pipes on remove_pipe and replace_pipe

* Move analysis to root for now

Try to find a better place for it, but it needs to go for now to avoid circular imports

* Simplify decorator

Don't return a wrapped class and instead just write to the object

* Update existing components and factories

* Add condition in factory for classes vs. functions

* Add missing from_nlp classmethods

* Add "retokenizes" to printed overview

* Update assigns/requires declarations of builtins

* Only return data if no_print is enabled

* Use multiline table for overview

* Don't support Span

* Rewrite errors/warnings and move them to spacy.errors
2019-10-27 13:35:49 +01:00
Ines Montani
cfffdba7b1 Implement new API for {Phrase}Matcher.add (backwards-compatible) ()
* Implement new API for {Phrase}Matcher.add (backwards-compatible)

* Update docs

* Also update DependencyMatcher.add

* Update internals

* Rewrite tests to use new API

* Add basic check for common mistake

Raise error with suggestion if user likely passed in a pattern instead of a list of patterns

* Fix typo [ci skip]
2019-10-25 22:21:08 +02:00
Ines Montani
d2da117114 Also support passing list to Language.disable_pipes ()
* Also support passing list to Language.disable_pipes

* Adjust internals
2019-10-25 16:19:08 +02:00
Ines Montani
e91366a216 Adjust formatting [ci skip] 2019-10-25 11:25:44 +02:00
Ines Montani
f31876154d Adjust formatting [ci skip] 2019-10-25 11:19:46 +02:00
Kabir Khan
93640373c7 Make entity_ruler ent_id resolution 2x faster and add docs for… ()
* Update entityruler.py

* Making ent_id resolution 2x faster and adding docs

* Fixing newlines in docstrings

* Fixing newlines in docstrings
2019-10-25 11:16:42 +02:00
Zhuoru Lin
10d88b09bb Bugfix/fix wikidata train entity linker ()
* Fix labels_discard Nonetype iteration error

* Contributor agreement for Zhuoru Lin

* Enhance EntityLinker.predict() to handle labels_discard is None case.
2019-10-24 12:52:59 +02:00
Ines Montani
181c01f629 Tidy up and auto-format 2019-10-18 11:27:38 +02:00
Sofie Van Landeghem
2d249a9502 KB extensions and better parsing of WikiData ()
* fix overflow error on windows

* more documentation & logging fixes

* md fix

* 3 different limit parameters to play with execution time

* bug fixes directory locations

* small fixes

* exclude dev test articles from prior probabilities stats

* small fixes

* filtering wikidata entities, removing numeric and meta items

* adding aliases from wikidata also to the KB

* fix adding WD aliases

* adding also new aliases to previously added entities

* fixing comma's

* small doc fixes

* adding subclassof filtering

* append alias functionality in KB

* prevent appending the same entity-alias pair

* fix for appending WD aliases

* remove date filter

* remove unnecessary import

* small corrections and reformatting

* remove WD aliases for now (too slow)

* removing numeric entities from training and evaluation

* small fixes

* shortcut during prediction if there is only one candidate

* add counts and fscore logging, remove FP NER from evaluation

* fix entity_linker.predict to take docs instead of single sentences

* remove enumeration sentences from the WP dataset

* entity_linker.update to process full doc instead of single sentence

* spelling corrections and dump locations in readme

* NLP IO fix

* reading KB is unnecessary at the end of the pipeline

* small logging fix

* remove empty files
2019-10-14 12:28:53 +02:00
Matthew Honnibal
29f9fec267
Improve spacy pretrain ()
* Support bilstm_depth arg in spacy pretrain

* Add option to ignore zero vectors in get_cossim_loss

* Use cosine loss in Cloze multitask
2019-10-07 23:34:58 +02:00
Sofie Van Landeghem
9d3ce7cba2 Ensure training doesn't crash with empty batches ()
* unit test for previously resolved unflatten issue

* prevent batch of empty docs to cause problems
2019-10-02 12:50:47 +02:00
Ines Montani
b6670bf0c2 Use consistent spelling 2019-10-02 10:37:39 +02:00
Ines Montani
3297a19545 Warn in Tagger.begin_training if no lemma tables are available () 2019-10-01 15:13:55 +02:00
Sofie Van Landeghem
22b9e12159 Ensure the NER remains consistent after resizing ()
* test and fix for second bug of issue 4042

* fix for first bug in 4042

* crashing test for Issue 4313

* forgot one instance of resize

* remove prints

* undo uncomment

* delete test for 4313 (uses third party lib)

* add fix for Issue 4313

* unit test for 4313
2019-09-27 20:57:13 +02:00
Matthew Honnibal
46c02d25b1 Merge changes to test_ner 2019-09-18 21:41:24 +02:00
tamuhey
875f3e5d8c remove redundant __call__ method in pipes.TextCategorizer ()
* remove redundant __call__ method in pipes.TextCategorizer

Because the parent __call__ method behaves in the same way.

* fix: Pipe.__call__ arg

* fix: invalid arg in Pipe.__call__

* modified:   spacy/tests/regression/test_issue4278.py ()

* deleted:    Pipfile
2019-09-18 21:31:27 +02:00
adrianeboyd
b5d999e510 Add textcat to train CLI ()
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani
16c2522791 Merge branch 'master' into develop 2019-09-14 16:42:01 +02:00
adrianeboyd
6942a6a69b Extend default punct for sentencizer ()
Most of these characters are for languages / writing systems that aren't
supported by spacy, but I don't think it causes problems to include
them. In the UD evals, Hindi and Urdu improve a lot as expected (from
0-10% to 70-80%) and Persian improves a little (90% to 96%). Tamil
improves in combination with .

The punctuation list is converted to a set internally because of its
increased length.

Sentence final punctuation generated with:

```
unichars -gas '[\p{Sentence_Break=STerm}\p{Sentence_Break=ATerm}]' '\p{Terminal_Punctuation}'
```

See: https://stackoverflow.com/a/9508766/461847

Fixes .
2019-09-14 15:25:48 +02:00
Ines Montani
27106d6528 Merge branch 'master' into develop 2019-09-13 17:07:17 +02:00
Sofie Van Landeghem
2ae5db580e dim bugfix when incl_prior is False () 2019-09-13 16:30:05 +02:00
Ines Montani
3c3658ef9f Merge branch 'master' into develop 2019-09-12 18:03:01 +02:00
Ines Montani
228bbf506d Improve label properties on pipes 2019-09-12 18:02:44 +02:00
Ines Montani
655b434553 Merge branch 'master' into develop 2019-09-12 11:39:18 +02:00
tamuhey
71909cdf22 Fix iss4278 ()
* fix: len(tuple) == 2

* () add fail test

* add contributor's aggreement
2019-09-12 10:44:49 +02:00
Ines Montani
8ebc3711dc Fix bug in Parser.labels and add test () 2019-09-11 18:29:35 +02:00
Matthew Honnibal
c308cf3e3e
Merge branch 'master' into feature/lemmatizer 2019-08-25 13:52:27 +02:00
Matthew Honnibal
bb911e5f4e Fix : 'subtok' label being added even if learn_tokens=False ()
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Ines Montani
f5d3afb1a3 Fix typo in docstrings [ci skip] 2019-08-22 16:24:15 +02:00
Matthew Honnibal
bcd08f20af Merge changes from master 2019-08-21 14:18:52 +02:00
adrianeboyd
8fe7bdd0fa Improve token pattern checking without validation ()
* Fix typo in rule-based matching docs

* Improve token pattern checking without validation

Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.

Addresses  (also related: , ).

* Check whether top-level attributes in patterns and attr for PhraseMatcher are
  in token pattern schema

* Check whether attribute value types are supported in general (as opposed to
  per attribute with full validation)

* Report various internal error types (OverflowError, AttributeError, KeyError)
  as ValueError with standard error messages

* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
  LEMMA, and DEP

* Add error messages with relevant details on how to use validate=True or nlp()
  instead of nlp.make_doc()

* Support attr=TEXT for PhraseMatcher

* Add NORM to schema

* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler

* Remove unnecessary .keys()

* Rephrase error messages

* Add another type check to Matcher

Add another type check to Matcher for more understandable error messages
in some rare cases.

* Support phrase_matcher_attr=TEXT for EntityRuler

* Don't use spacy.errors in examples and bin scripts

* Fix error code

* Auto-format

Also try get Azure pipelines to finally start a build :(

* Update errors.py


Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2019-08-21 14:00:37 +02:00
Ines Montani
f65e36925d Fix absolute imports and avoid importing from cli 2019-08-20 15:08:59 +02:00
Sofie Van Landeghem
0ba1b5eebc CLI scripts for entity linking (wikipedia & generic) ()
* document token ent_kb_id

* document span kb_id

* update pipeline documentation

* prior and context weights as bool's instead

* entitylinker api documentation

* drop for both models

* finish entitylinker documentation

* small fixes

* documentation for KB

* candidate documentation

* links to api pages in code

* small fix

* frequency examples as counts for consistency

* consistent documentation about tensors returned by predict

* add entity linking to usage 101

* add entity linking infobox and KB section to 101

* entity-linking in linguistic features

* small typo corrections

* training example and docs for entity_linker

* predefined nlp and kb

* revert back to similarity encodings for simplicity (for now)

* set prior probabilities to 0 when excluded

* code clean up

* bugfix: deleting kb ID from tokens when entities were removed

* refactor train el example to use either model or vocab

* pretrain_kb example for example kb generation

* add to training docs for KB + EL example scripts

* small fixes

* error numbering

* ensure the language of vocab and nlp stay consistent across serialization

* equality with =

* avoid conflict in errors file

* add error 151

* final adjustements to the train scripts - consistency

* update of goldparse documentation

* small corrections

* push commit

* turn kb_creator into CLI script (wip)

* proper parameters for training entity vectors

* wikidata pipeline split up into two executable scripts

* remove context_width

* move wikidata scripts in bin directory, remove old dummy script

* refine KB script with logs and preprocessing options

* small edits

* small improvements to logging of EL CLI script
2019-08-13 15:38:59 +02:00
adrianeboyd
69aca7d839 Add validate option to EntityRuler ()
* Add validate option to EntityRuler

* Add validate to EntityRuler, passed to Matcher and PhraseMatcher

* Add validate to usage and API docs

* Update website/docs/usage/rule-based-matching.md

Co-Authored-By: Ines Montani <ines@ines.io>

* Update website/docs/usage/rule-based-matching.md

Co-Authored-By: Ines Montani <ines@ines.io>
2019-08-07 00:40:53 +02:00
Matthew Honnibal
4632c597e7 Fix Pipe base class 2019-08-01 17:29:01 +02:00
Sofie Van Landeghem
7de3b129ab Resolve edge case when calling textcat.predict with empty doc ()
* resolve edge case where no doc has tokens when calling textcat.predict

* more explicit value test
2019-07-30 14:58:01 +02:00
Matthew Honnibal
06eb428ed1 Make pipe base class a bit less presumptuous 2019-07-28 17:56:11 +02:00
Matthew Honnibal
16b5144095 Don't raise NotImplemented in Pipe.update 2019-07-28 17:54:11 +02:00
Matthew Honnibal
73e095923f 💫 Improve error message when model.from_bytes() dies ()
* Improve error message when model.from_bytes() dies

When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,

e.g. "AttributeError: FunctionLayer has no attribute G"

This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.

I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>


Co-authored-by: Ines Montani <ines@ines.io>
2019-07-24 11:27:34 +02:00
svlandeg
4e7ec1ed31 return fix 2019-07-23 14:23:58 +02:00
svlandeg
400ff342cf replace assert's with custom error messages 2019-07-23 11:52:48 +02:00
svlandeg
20389e4553 format and bugfix 2019-07-22 15:08:17 +02:00
svlandeg
41fb5204ba output tensors as part of predict 2019-07-19 14:47:36 +02:00
svlandeg
21176517a7 have gold.links correspond exactly to doc.ents 2019-07-19 12:36:15 +02:00
svlandeg
e1213eaf6a use original gold object in get_loss function 2019-07-18 13:35:10 +02:00
svlandeg
ec55d2fccd filter training data beforehand (+black formatting) 2019-07-18 10:22:24 +02:00
svlandeg
a63d15a142 code cleanup 2019-07-15 17:36:43 +02:00
svlandeg
60f299374f set default context width 2019-07-15 12:03:09 +02:00
Sofie Van Landeghem
c4c21cb428 more friendly textcat errors ()
* more friendly textcat errors with require_model and require_labels

* update thinc version with recent bugfix
2019-07-10 19:39:38 +02:00
Ines Montani
40cd03fc35 Improve EntityRuler serialization 2019-07-10 12:25:45 +02:00
Ines Montani
570ab1f481 Fix handling of old entity ruler files
Expected an `entity_ruler.jsonl` file in the top-level model directory, so the path passed to from_disk by default (model path plus componentn name), but with the suffix ".jsonl".
2019-07-10 12:14:12 +02:00
Ines Montani
ea2050079b Auto-format 2019-07-10 12:03:05 +02:00
Ines Montani
f2ea3e3ea2
Merge branch 'master' into feature/nel-wiki 2019-07-09 21:57:47 +02:00
Ines Montani
547464609d Remove merge_subtokens from parser postprocessing for now 2019-07-09 21:50:30 +02:00
Joshua Smith
2eb925bd05 Added an argument to EntityRuler constructor to pass attrs to… ()
* Perserve flags in EntityRuler

The EntityRuler () does not preserve
overwrite flags (or `ent_id_sep`) when serialized.  This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.

* add signed contributor agreement

* flake8 cleanup

mostly blank line issues.

* mark test from the issue as needing a model

The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.

* Adds `phrase_matcher_attr` to allow args to PhraseMatcher

This is an added arg to pass to the `PhraseMatcher`. For example,
this allows creation of a case insensitive phrase matcher when the
`EntityRuler` is created.  References 

* remove unneeded model loading

The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)

* updated docstring for new argument

* updated docs to reflect new argument to the EntityRuler constructor

* change tempdir handling to be compatible with python 2.7

* return conflicted code to entityruler

Some stuff got cut out because of merge conflicts, this
returns that code for the phrase_matcher_attr.

* fixed typo in the code added back after conflicts

* flake8 compliance

When I deconflicted the branch there were some flake8 issues
introduced. This resolves the spacing problems.

* test changes:  attempts to fix flaky test in python3.5

These tests seem to be alittle flaky in 3.5 so I changed the check to avoid
the comparisons that seem to be fail sometimes.
2019-07-09 20:09:17 +02:00
Joshua Smith
e8420ab2b7 Added support for serializing overwrite and ent_id_sep ()
* Perserve flags in EntityRuler

The EntityRuler () does not preserve
overwrite flags (or `ent_id_sep`) when serialized.  This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.

* add signed contributor agreement

* flake8 cleanup

mostly blank line issues.

* mark test from the issue as needing a model

The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.

* remove unneeded model loading

The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)

* change tempdir handling to be compatible with python 2.7

* Adds code to handle item saved before this change.

This code chanes how the save files are handled and how the bytes
are stored as well.  This code adds check to dispatch correctly
if it encounters bytes or files saved in the old format (and tests
for those cases).

* use util function for tempdir management

Updated after PR comments: this code now uses the make_tempdir function from util
instead of doing it by hand.
2019-07-08 17:28:28 +02:00
svlandeg
668b17ea4a deuglify kb deserializer 2019-07-03 15:00:42 +02:00
svlandeg
8840d4b1b3 fix for context encoder optimizer 2019-07-03 13:35:36 +02:00
svlandeg
2d2dea9924 experiment with adding NER types to the feature vector 2019-06-29 14:52:36 +02:00
svlandeg
c664f58246 adding prior probability as feature in the model 2019-06-28 16:22:58 +02:00
svlandeg
68a0662019 context encoder with Tok2Vec + linking model instead of cosine 2019-06-28 08:29:31 +02:00
Ines Montani
37f744ca00 Auto-format [ci skip] 2019-06-26 14:48:09 +02:00
svlandeg
1de61f68d6 improve speed of prediction loop 2019-06-26 13:53:10 +02:00
svlandeg
58a5b40ef6 clean up duplicate code 2019-06-24 15:19:58 +02:00
svlandeg
b58bace84b small fixes 2019-06-24 10:55:04 +02:00
svlandeg
cc9ae28a52 custom error and warning messages 2019-06-19 12:35:26 +02:00
svlandeg
791327e3c5 Merge remote-tracking branch 'upstream/master' into feature/nel-wiki 2019-06-19 09:44:05 +02:00
svlandeg
a31648d28b further code cleanup 2019-06-19 09:15:43 +02:00
svlandeg
478305cd3f small tweaks and documentation 2019-06-18 18:38:09 +02:00
svlandeg
0d177c1146 clean up code, remove old code, move to bin 2019-06-18 13:20:40 +02:00
svlandeg
ffae7d3555 sentence encoder only (removing article/mention encoder) 2019-06-18 00:05:47 +02:00
Kabir Khan
1e19f34e29 Add optional id property to EntityRuler patterns ()
* Adding support for entity_id in EntityRuler pipeline component

* Adding Spacy Contributor aggreement

* Updating EntityRuler to use string.format instead of f strings

* Update Entity Ruler to support an 'id' attribute per pattern that explicitly identifies an entity.

* Fixing tests

* Remove custom extension entity_id and use built in ent_id token attribute.

* Changing entity_id to ent_id for consistent naming

* entity_ids => ent_ids

* Removing kb, cleaning up tests, making util functions private, use rsplit instead of split
2019-06-16 13:29:04 +02:00
svlandeg
b312f2d0e7 redo training data to be independent of KB and entity-level instead of doc-level 2019-06-14 15:55:26 +02:00
svlandeg
78dd3e11da write entity linking pipe to file and keep vocab consistent between kb and nlp 2019-06-13 16:25:39 +02:00
svlandeg
b12001f368 small fixes 2019-06-12 22:05:53 +02:00
svlandeg
6521cfa132 speeding up training 2019-06-12 13:37:05 +02:00
svlandeg
fe1ed432ef eval on dev set, varying combo's of prior and context scores 2019-06-11 11:40:58 +02:00
svlandeg
83dc7b46fd first tests with EL pipe 2019-06-10 21:25:26 +02:00
Matthew Honnibal
a931d72459 Add merge_subtokens as parser post-process. Re 2019-06-07 20:40:41 +02:00
svlandeg
7de1ee69b8 training loop in proper pipe format 2019-06-07 15:55:10 +02:00
svlandeg
0486ccabfd introduce goldparse.links 2019-06-07 13:54:45 +02:00
svlandeg
a5c061f506 storing NEL training data in GoldParse objects 2019-06-07 12:58:42 +02:00
svlandeg
61f0e2af65 code cleanup 2019-06-06 20:22:14 +02:00
svlandeg
5c723c32c3 entity vectors in the KB + serialization of them 2019-06-05 18:29:18 +02:00
svlandeg
9abbd0899f separate entity encoder to get 64D descriptions 2019-06-05 00:09:46 +02:00
svlandeg
fb37cdb2d3 implementing el pipe in pipes.pyx (not tested yet) 2019-06-03 21:32:54 +02:00
svlandeg
dd691d0053 debugging 2019-05-17 17:44:11 +02:00
Sofie
a4a6bfa4e1
Merge branch 'master' into feature/el-framework 2019-03-26 11:00:02 +01:00
svlandeg
8814b9010d entity as one field instead of both ID and name 2019-03-25 18:10:41 +01:00
Matthew Honnibal
6c783f8045 Bug fixes and options for TextCategorizer ()
* Fix code for bag-of-words feature extraction

The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).

* Support 'bow' architecture for TextCategorizer

This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.

* Fix size limits in train_textcat example

* Explain architectures better in docs
2019-03-23 16:44:44 +01:00
Ines Montani
06bf130890 💫 Add better and serializable sentencizer ()
* Add better serializable sentencizer component

* Replace default factory

* Add tests

* Tidy up

* Pass test

* Update docs
2019-03-23 15:45:02 +01:00
svlandeg
5318ce88fa 'entity_linker' instead of 'el' 2019-03-22 13:55:10 +01:00
svlandeg
1ee0e78fd7 select candidate with highest prior probabiity 2019-03-22 11:36:45 +01:00
svlandeg
c593607ce2 minimal EL pipe 2019-03-22 11:36:45 +01:00
svlandeg
735fc2a735 annotate kb_id through ents in doc 2019-03-22 11:36:44 +01:00
svlandeg
d849eb2455 adding kb_id as field to token, el as nlp pipeline component 2019-03-22 11:34:46 +01:00
Ines Montani
278e9d2eb0 Merge branch 'master' into feature/lemmatizer 2019-03-16 13:44:22 +01:00
Ines Montani
cb5dbfa63a Tidy up references to n_threads and fix default 2019-03-15 16:24:26 +01:00
Ines Montani
7ba3a5d95c 💫 Make serialization methods consistent ()
* Make serialization methods consistent

exclude keyword argument instead of random named keyword arguments and deprecation handling

* Update docs and add section on serialization fields
2019-03-10 19:16:45 +01:00
Matthew Honnibal
0f12082465 Refactor morphologizer 2019-03-09 22:54:59 +00:00
Matthew Honnibal
41a3016019 Refactor morphologizer class map 2019-03-09 20:55:33 +01:00
Matthew Honnibal
f742900f83 Set pos attribute in morphologizer 2019-03-09 11:51:11 +00:00
Matthew Honnibal
b6d60d0041 Merge branch 'feature/lemmatizer' of https://github.com/explosion/spaCy into feature/lemmatizer 2019-03-09 00:41:53 +00:00
Matthew Honnibal
42bc3ad73b Fix class mapping for morphologizer 2019-03-09 00:20:29 +00:00
Matthew Honnibal
cc2b2dba14 Neaten set_morphology option on Tagger 2019-03-08 19:16:02 +01:00
Matthew Honnibal
afa227e25b Fix setter 2019-03-08 19:10:01 +01:00
Matthew Honnibal
b27bd42613 Fix compile error 2019-03-08 19:06:02 +01:00
Matthew Honnibal
c91577db02 Add set_morphology cfg option for Tagger 2019-03-08 19:03:17 +01:00
Matthew Honnibal
49cf002ac4 Add missing import 2019-03-08 18:59:25 +01:00
Matthew Honnibal
d7ec1d62cb Fix Morphologizer 2019-03-08 18:54:25 +01:00
Matthew Honnibal
3908911da4 Fix import 2019-03-08 17:04:14 +01:00
Matthew Honnibal
8a9181d95a Merge __init__ 2019-03-08 16:58:42 +01:00
Matthew Honnibal
4cf897e8e1 Update from develop 2019-03-08 16:56:54 +01:00
Ines Montani
d260aa17fd Merge branch 'develop' into feature/lemmatizer 2019-03-08 13:25:00 +01:00
Ines Montani
296446a1c8
Tidy up and improve docs and docstrings ()
<!--- Provide a general summary of your changes in the title. -->

## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs

### Types of change
enhancement, docs

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-08 11:42:26 +01:00
Matthew Honnibal
fed0371db7 Remove enums from morphology 2019-03-07 17:14:57 +01:00
Matthew Honnibal
8805966460 Fix moved Morphologizer class 2019-03-07 10:46:27 +01:00
Matthew Honnibal
fc1cc4c529 Move morphologizer under spacy/pipes 2019-03-07 01:36:26 +01:00
Matthew Honnibal
bfa52d9d8a Move morphologizer within spacy/pipes 2019-03-07 01:34:32 +01:00
Matthew Honnibal
6b0008afc6 Clean up TextCategorizer slightly 2019-02-23 12:28:06 +01:00
Matthew Honnibal
ce1e4eace2 Default to former TextCategorizer model
* Keep TextCategorizer default model same as v2.0
* Add option 'architecture' that allows "simple_cnn" to switch to
simpler model.
* Add option exclusive_classes, defaulting to False. If set to True,
the model treats classes as mutually exclusive, i.e. only one class can
be true per instance.
2019-02-23 11:55:16 +01:00
Matthew Honnibal
a137e8b418 Fix Pipe.to_bytes() when model uninitialized
Closes 
2019-02-21 09:42:02 +01:00
Ines Montani
5651a0d052 💫 Replace {Doc,Span}.merge with Doc.retokenize ()
* Add deprecation warning to Doc.merge and Span.merge

* Replace {Doc,Span}.merge with Doc.retokenize
2019-02-15 10:29:44 +01:00
Ines Montani
f146121092 💫 Make handling of [Pipe].labels consistent ()
* Make handling of [Pipe].labels consistent

* Un-xfail passing test

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Update spacy/tests/pipeline/test_pipe_methods.py

Co-Authored-By: ines <ines@ines.io>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: ines <ines@ines.io>

* Move error message to spacy.errors

* Fix textcat labels and test

* Make EntityRuler.labels return tuple as well
2019-02-15 06:03:19 +11:00
Ines Montani
a9f8d17632
💫 Break up large pipeline.pyx ()
* Break up large pipeline.pyx

* Merge some components back together

* Fix typo
2019-02-10 12:14:51 +01:00