* Add scores to output in spancat
This exposes the scores as an attribute on the SpanGroup. Includes a
basic test.
* Add basic doc note
* Vectorize score calcs
* Add "annotation format" section
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clean up doc section
* Ran prettier on docs
* Get arrays off the gpu before iterating over them
* Remove int() calls
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Support list values and IS_INTERSECT in Matcher
* Support list values as token attributes for set operators, not just as
pattern values.
* Add `IS_INTERSECT` operator.
* Fix incorrect `ISSUBSET` and `ISSUPERSET` in schema and docs.
* Rename IS_INTERSECT to INTERSECTS
* Raise an error for textcat with <2 labels
Raise an error if initializing a `textcat` component without at least
two labels.
* Add similar note to docs
* Update positive_label description in API docs
* Draft spancat model
* Add spancat model
* Add test for extract_spans
* Add extract_spans layer
* Upd extract_spans
* Add spancat model
* Add test for spancat model
* Upd spancat model
* Update spancat component
* Upd spancat
* Update spancat model
* Add quick spancat test
* Import SpanCategorizer
* Fix SpanCategorizer component
* Import SpanGroup
* Fix span extraction
* Fix import
* Fix import
* Upd model
* Update spancat models
* Add scoring, update defaults
* Update and add docs
* Fix type
* Update spacy/ml/extract_spans.py
* Auto-format and fix import
* Fix comment
* Fix type
* Fix type
* Update website/docs/api/spancategorizer.md
* Fix comment
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Better defense
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix labels list
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/ml/extract_spans.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Set annotations during update
* Set annotations in spancat
* fix imports in test
* Update spacy/pipeline/spancat.py
* replace MaxoutLogistic with LinearLogistic
* fix config
* various small fixes
* remove set_annotations parameter in update
* use our beloved tupley format with recent support for doc.spans
* bugfix to allow renaming the default span_key (scores weren't showing up)
* use different key in docs example
* change defaults to better-working parameters from project (WIP)
* register spacy.extract_spans.v1 for legacy purposes
* Upd dev version so can build wheel
* layers instead of architectures for smaller building blocks
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Include additional scores from overrides in combined score weights
* Parameterize spans key in scoring
Parameterize the `SpanCategorizer` `spans_key` for scoring purposes so
that it's possible to evaluate multiple `spancat` components in the same
pipeline.
* Use the (intentionally very short) default spans key `sc` in the
`SpanCategorizer`
* Adjust the default score weights to include the default key
* Adjust the scorer to use `spans_{spans_key}` as the prefix for the
returned score
* Revert addition of `attr_name` argument to `score_spans` and adjust
the key in the `getter` instead.
Note that for `spancat` components with a custom `span_key`, the score
weights currently need to be modified manually in
`[training.score_weights]` for them to be available during training. To
suppress the default score weights `spans_sc_p/r/f` during training, set
them to `null` in `[training.score_weights]`.
* Update website/docs/api/scorer.md
* Fix scorer for spans key containing underscore
* Increment version
* Add Spans to Evaluate CLI (#8439)
* Add Spans to Evaluate CLI
* Change to spans_key
* Add spans per_type output
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix spancat GPU issues (#8455)
* Fix GPU issues
* Require thinc >=8.0.6
* Switch to glorot_uniform_init
* Fix and test ngram suggester
* Include final ngram in doc for all sizes
* Fix ngrams for docs of the same length as ngram size
* Handle batches of docs that result in no ngrams
* Add tests
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Nirant <NirantK@users.noreply.github.com>
* Support a cfg field in transition system
* Make NER 'has gold' check use right alignment for span
* Pass 'negative_samples_key' property into NER transition system
* Add field for negative samples to NER transition system
* Check neg_key in NER has_gold
* Support negative examples in NER oracle
* Test for negative examples in NER
* Fix name of config variable in NER
* Remove vestiges of old-style partial annotation
* Remove obsolete tests
* Add comment noting lack of support for negative samples in parser
* Additions to "neg examples" PR (#8201)
* add custom error and test for deprecated format
* add test for unlearning an entity
* add break also for Begin's cost
* add negative_samples_key property on Parser
* rename
* extend docs & fix some older docs issues
* add subclass constructors, clean up tests, fix docs
* add flaky test with ValueError if gold parse was not found
* remove ValueError if n_gold == 0
* fix docstring
* Hack in environment variables to try out training
* Remove hack
* Remove NER hack, and support 'negative O' samples
* Fix O oracle
* Fix transition parser
* Remove 'not O' from oracle
* Fix NER oracle
* check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation
* use set instead of list in consistency check
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* implement textcat resizing for TextCatCNN
* resizing textcat in-place
* simplify code
* ensure predictions for old textcat labels remain the same after resizing (WIP)
* fix for softmax
* store softmax as attr
* fix ensemble weight copy and cleanup
* restructure slightly
* adjust documentation, update tests and quickstart templates to use latest versions
* extend unit test slightly
* revert unnecessary edits
* fix typo
* ensemble architecture won't be resizable for now
* use resizable layer (WIP)
* revert using resizable layer
* resizable container while avoid shape inference trouble
* cleanup
* ensure model continues training after resizing
* use fill_b parameter
* use fill_defaults
* resize_layer callback
* format
* bump thinc to 8.0.4
* bump spacy-legacy to 3.0.6
* Update cats score names in Scorer API docs
* Refer to performance in meta
* Update package naming/versions, lemmatizer details
* Minor formatting fixes
* Provide more explanation for cats_score_desc
* Provide language-specific lemmatizer defaults in API docs
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* unit test for pickling KB
* add pickling test for NEL
* KB to_bytes and from_bytes
* NEL to_bytes and from_bytes
* xfail pickle tests for now
* fix docs
* cleanup
* Minor updates to quickstart settings/instructions
* set default value of textcat exclusive to `false` until the default
checkbox behavior is updated
* add the `morphologizer` to the list of components
* add a note that v3.0.6+ is required
* Switch to warning above quickstart
* Undo changes to textcat default in quickstart
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix pretraining objectives fragment
The fragment here is reused from a heading higher up, so you couldn't
link to this section.
* Fix section link to new fragment
* Add training option to set annotations on update
Add a `[training]` option called `set_annotations_on_update` to specify
a list of components for which the predicted annotations should be set
on `example.predicted` immediately after that component has been
updated. The predicted annotations can be accessed by later components
in the pipeline during the processing of the batch in the same `update`
call.
* Rename to annotates / annotating_components
* Add test for `annotating_components` when training from config
* Add documentation
* Add callback to copy vocab/tokenizer from model
Add callback `spacy.copy_from_base_model.v1` to copy the tokenizer
settings and/or vocab (including vectors) from a base model.
* Move spacy.copy_from_base_model.v1 to spacy.training.callbacks
* Add documentation
* Modify to specify model as tokenizer and vocab params
* Update sent_starts in Example.from_dict
Update `sent_starts` for `Example.from_dict` so that `Optional[bool]`
values have the same meaning as for `Token.is_sent_start`.
Use `Optional[bool]` as the type for sent start values in the docs.
* Use helper function for conversion to ternary ints
* Replace negative rows with 0 in StaticVectors
Replace negative row indices with 0-vectors in `StaticVectors`.
* Increase versions related to StaticVectors
* Increase versions of all architctures and layers related to
`StaticVectors`
* Improve efficiency of 0-vector operations
Parallel `spacy-legacy` PR: https://github.com/explosion/spacy-legacy/pull/5
* Update config defaults to new versions
* Update docs
* Update processing-pipelines.md
Under "things to try," inform users they can save metadata when using nlp.pipe(foobar, as_tuples=True)
Link to a new example on the attributes page detailing the following:
> ```
> data = [
> ("Some text to process", {"meta": "foo"}),
> ("And more text...", {"meta": "bar"})
> ]
>
> for doc, context in nlp.pipe(data, as_tuples=True):
> # Let's assume you have a "meta" extension registered on the Doc
> doc._.meta = context["meta"]
> ```
from https://stackoverflow.com/questions/57058798/make-spacy-nlp-pipe-process-tuples-of-text-and-additional-information-to-add-as
* Updating the attributes section
Update the attributes section with example of how extensions can be used to store metadata.
* Update processing-pipelines.md
* Update processing-pipelines.md
Made as_tuples example executable and relocated to the end of the "Processing Text" section.
* Update processing-pipelines.md
* Update processing-pipelines.md
Removed extra line
* Reformat and rephrase
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update Tokenizer.explain with special matches
Update `Tokenizer.explain` and the pseudo-code in the docs to include
the processing of special cases that contain affixes or whitespace.
* Handle optional settings in explain
* Add test for special matches in explain
Add test for `Tokenizer.explain` for special cases containing affixes.
* Terminology: deprecated vs obsolete
Typically, deprecated is used for functionality that is bound to become unavailable but that can still be used. Obsolete is used for features that have been removed. In E941, I think what is meant is "obsolete" since loading a model by a shortcut simply does not work anymore (and throws an error). This is different from downloading a model with a shortcut, which is deprecated but still works.
In light of this, perhaps all other error codes should be checked as well.
* clarify that the link command is removed and not just deprecated
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
* extend span scorer with consider_label and allow_overlap
* unit test for spans y2x overlap
* add score_spans unit test
* docs for new fields in scorer.score_spans
* rename to include_label
* spell out if-else for clarity
* rename to 'labeled'
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Support match alignments
* change naming from match_alignments to with_alignments, add conditional flow if with_alignments is given, validate with_alignments, add related test case
* remove added errors, utilize bint type, cleanup whitespace
* fix no new line in end of file
* Minor formatting
* Skip alignments processing if as_spans is set
* Add with_alignments to Matcher API docs
* Update website/docs/api/matcher.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* add multi-label textcat to menu
* add infobox on textcat API
* add info to v3 migration guide
* small edits
* further fixes in doc strings
* add infobox to textcat architectures
* add textcat_multilabel to overview of built-in components
* spelling
* fix unrelated warn msg
* Add textcat_multilabel to quickstart [ci skip]
* remove separate documentation page for multilabel_textcategorizer
* small edits
* positive label clarification
* avoid duplicating information in self.cfg and fix textcat.score
* fix multilabel textcat too
* revert threshold to storage in cfg
* revert threshold stuff for multi-textcat
Co-authored-by: Ines Montani <ines@ines.io>
* initialize NLP with train corpus
* add more pretraining tests
* more tests
* function to fetch tok2vec layer for pretraining
* clarify parameter name
* test different objectives
* formatting
* fix check for static vectors when using vectors objective
* clarify docs
* logger statement
* fix init_tok2vec and proc.initialize order
* test training after pretraining
* add init_config tests for pretraining
* pop pretraining block to avoid config validation errors
* custom errors
* Add regression test
* Run PhraseMatcher on Spans
* Add test for PhraseMatcher on Spans and Docs
* Add SCA
* Add test with 3 matches in Doc, 1 match in Span
* Update docs
* Use doc.length for find_matches in tokenizer
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add error handler for pipe methods
* add unit tests
* remove pipe method that are the same as their base class
* have Language keep track of a default error handler
* cleanup
* formatting
* small refactor
* add documentation
* warn when frozen components break listener pattern
* few notes in the documentation
* update arg name
* formatting
* cleanup
* specify listeners return type
* raise NotImplementedError when noun_chunks iterator is not implemented
* bring back, fix and document span.noun_chunks
* formatting
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Add long_token_splitter component
Add a `long_token_splitter` component for use with transformer
pipelines. This component splits up long tokens like URLs into smaller
tokens. This is particularly relevant for pretrained pipelines with
`strided_spans`, since the user can't change the length of the span
`window` and may not wish to preprocess the input texts.
The `long_token_splitter` splits tokens that are at least
`long_token_length` tokens long into smaller tokens of `split_length`
size.
Notes:
* Since this is intended for use as the first component in a pipeline,
the token splitter does not try to preserve any token annotation.
* API docs to come when the API is stable.
* Adjust API, add test
* Fix name in factory
* Handle unset token.morph in Morphologizer
Handle unset `token.morph` in `Morphologizer.initialize` and
`Morphologizer.get_loss`. If both `token.morph` and `token.pos` are
unset, treat the annotation as missing rather than empty.
* Add token.has_morph()
* Draft out initial Spans data structure
* Initial span group commit
* Basic span group support on Doc
* Basic test for span group
* Compile span_group.pyx
* Draft addition of SpanGroup to DocBin
* Add deserialization for SpanGroup
* Add tests for serializing SpanGroup
* Fix serialization of SpanGroup
* Add EdgeC and GraphC structs
* Add draft Graph data structure
* Compile graph
* More work on Graph
* Update GraphC
* Upd graph
* Fix walk functions
* Let Graph take nodes and edges on construction
* Fix walking and getting
* Add graph tests
* Fix import
* Add module with the SpanGroups dict thingy
* Update test
* Rename 'span_groups' attribute
* Try to fix c++11 compilation
* Fix test
* Update DocBin
* Try to fix compilation
* Try to fix graph
* Improve SpanGroup docstrings
* Add doc.spans to documentation
* Fix serialization
* Tidy up and add docs
* Update docs [ci skip]
* Add SpanGroup.has_overlap
* WIP updated Graph API
* Start testing new Graph API
* Update Graph tests
* Update Graph
* Add docstring
Co-authored-by: Ines Montani <ines@ines.io>
Add `initialize.before_init` and `initialize.after_init` callbacks to
the config. The `initialize.before_init` callback is a place to
implement one-time tokenizer customizations that are then saved with the
model.
* fix TorchBiLSTMEncoder documentation
* ensure the types of the encoding Tok2vec layers are correct
* update references from v1 to v2 for the new architectures
* multi-label textcat component
* formatting
* fix comment
* cleanup
* fix from #6481
* random edit to push the tests
* add explicit error when textcat is called with multi-label gold data
* fix error nr
* small fix
Remove the non-working `--use-chars` option from the train CLI. The
implementation of the option across component types and the CLI settings
could be fixed, but the `CharacterEmbed` model does not work on GPU in
v2 so it's better to remove it.
* Don't recommend an editable install in the default source
instructions.
* Use `pip install --no-build-isolation` for editable installs.
* Remove reference to `virtualenv`.
* Avoid a SyntaxError in self-attentive-parser
Fix a usage of quotation marks in the example of spaCy Universe self-attentive-parser
* Create forest1988.md
Fill in the spaCy contributor agreement
* Handle missing reference values in scorer
Handle missing values in reference doc during scoring where it is
possible to detect an unset state for the attribute. If no reference
docs contain annotation, `None` is returned instead of a score. `spacy
evaluate` displays `-` for missing scores and the missing scores are
saved as `None`/`null` in the metrics.
Attributes without unset states:
* `token.head`: relies on `token.dep` to recognize unset values
* `doc.cats`: unable to handle missing annotation
Additional changes:
* add optional `has_annotation` check to `score_scans` to replace
`doc.sents` hack
* update `score_token_attr_per_feat` to handle missing and empty morph
representations
* fix bug in `Doc.has_annotation` for normalization of `IS_SENT_START`
vs. `SENT_START`
* Fix import
* Update return types
* Add `cuda110` to setup.cfg and quickstart dropdown
* Switch to `pip` for pip-only packages in conda quickstart instructions
* Update zh pkuseg install message with version range and conda
* Remove `zh` from `extras_require` because the default doesn't require
additional packages
* Adding Mindmeld to Universe JSON
Mindmeld is a conversational AI platform for deep-domain voice interfaces and chatbots. https://www.mindmeld.com/
* Signing contribution agreement.
Co-authored-by: kunshar2 <kunshar2@cisco.com>
* small fix in example imports
* throw error when train_corpus or dev_corpus is not a string
* small fix in custom logger example
* limit macro_auc to labels with 2 annotations
* fix typo
* also create parents of output_dir if need be
* update documentation of textcat scores
* refactor TextCatEnsemble
* fix tests for new AUC definition
* bump to 3.0.0a42
* update docs
* rename to spacy.TextCatEnsemble.v2
* spacy.TextCatEnsemble.v1 in legacy
* cleanup
* small fix
* update to 3.0.0rc2
* fix import that got lost in merge
* cursed IDE
* fix two typos
* rename Pipe to TrainablePipe
* split functionality between Pipe and TrainablePipe
* remove unnecessary methods from certain components
* cleanup
* hasattr(component, "pipe") should be sufficient again
* remove serialization and vocab/cfg from Pipe
* unify _ensure_examples and validate_examples
* small fixes
* hasattr checks for self.cfg and self.vocab
* make is_resizable and is_trainable properties
* serialize strings.json instead of vocab
* fix KB IO + tests
* fix typos
* more typos
* _added_strings as a set
* few more tests specifically for _added_strings field
* bump to 3.0.0a36
* Make logging and progress easier to control
* Update docs
* Cleanup errors
* Fix ConfigValidationError
* Pass stdout/stderr, not wasabi.Printer
* Fix type
* Upd logging example
* Fix logger example
* Fix type
* add informative warning when messing up store_user_data DocBin flags
* add informative warning when messing up store_user_data DocBin flags
* cleanup test
* rename to patterns_path