Matthew Honnibal
ca28590ddd
Use dep and ent multi-task objectives for parser'
2017-09-26 08:13:52 -05:00
Matthew Honnibal
18a27c7579
Fix typo in tensorizer serialization
2017-09-26 06:45:14 -05:00
Matthew Honnibal
bf917225ab
Allow multi-task objectives during training
2017-09-26 05:42:52 -05:00
ines
d2d35b63b7
Fix formatting
2017-09-25 18:37:13 +02:00
Matthew Honnibal
8eb0b7b779
Add docstrings for Pipe API
2017-09-25 16:22:07 +02:00
Matthew Honnibal
39f390dba7
Add docstrings for Pipe API
2017-09-25 16:20:49 +02:00
Matthew Honnibal
4348c479fc
Merge pre-trained vectors and noshare patches
2017-09-22 20:07:28 -05:00
Matthew Honnibal
386c1a5bd8
Fix tagger training
2017-09-23 02:58:06 +02:00
Matthew Honnibal
05596159bf
Fix serialization when pre-trained vectors
2017-09-22 15:33:27 -05:00
Matthew Honnibal
d9124f1aa3
Add link_vectors_to_models function
2017-09-22 09:38:22 -05:00
Matthew Honnibal
40a4873b70
Fix serialization of model options
2017-09-21 13:07:26 -05:00
Matthew Honnibal
20193371f5
Don't share CNN, to reduce complexities
2017-09-21 14:59:48 +02:00
Matthew Honnibal
24e85c2048
Pass values for CNN maxout pieces option
2017-09-20 19:16:12 -05:00
Matthew Honnibal
b36a38f63d
Fix serialization of pretrained_dims property
2017-09-19 23:42:27 +02:00
Matthew Honnibal
40837b275d
Fix tensorizer with pretrained vectors
2017-09-18 18:05:38 -05:00
Matthew Honnibal
84e637e2e6
Pass option for pretrained vectors in pipeline
2017-09-16 12:46:02 -05:00
Matthew Honnibal
7fdafcc4c4
Fix config loading in tagger
2017-09-04 16:38:49 +02:00
Matthew Honnibal
382ce566eb
Fix deserialization bug
2017-09-04 15:19:01 +02:00
Matthew Honnibal
9e378bdac5
Fix textcat serialization
2017-09-02 15:17:20 +02:00
Matthew Honnibal
a3b69bcb3d
Add low_data mode in textcat
2017-09-02 14:56:30 +02:00
Matthew Honnibal
5e6a9e7dcc
Add rule-based SBD
2017-09-02 12:53:38 +02:00
Matthew Honnibal
c1d3ff517a
Track loss in tagger
2017-08-20 14:42:23 +02:00
Matthew Honnibal
ec482580b5
Restore changes to pipeline.pyx from nn-beam-parser branch
2017-08-18 22:02:35 +02:00
Matthew Honnibal
426f84937f
Resolve conflicts when merging new beam parsing stuff
2017-08-18 13:38:32 -05:00
Matthew Honnibal
1cb2f15d65
Clean up unused predict_confidences function
2017-08-16 18:22:26 -05:00
Matthew Honnibal
52c180ecf5
Revert "Merge branch 'develop' of https://github.com/explosion/spaCy into develop"
...
This reverts commit ea8de11ad5
, reversing
changes made to 08e443e083
.
2017-08-14 13:00:23 +02:00
Matthew Honnibal
3e30712b62
Improve defaults
2017-08-12 19:24:17 -05:00
Matthew Honnibal
680043ebca
Improve efficiency of tagger.set_annotations for GPU
2017-08-12 08:54:21 -05:00
Matthew Honnibal
3cb8f06881
Fix NeuralLabeller
2017-08-06 14:15:14 +02:00
Matthew Honnibal
e9ab800e15
Fix tagging model
2017-08-06 01:50:08 +02:00
Matthew Honnibal
468c138ab3
WIP: Add fine-tuning logic to tagger model, re #1182
2017-08-06 01:13:23 +02:00
Matthew Honnibal
6780132821
Fix tagger loading
2017-07-25 19:41:11 +02:00
Matthew Honnibal
c4a81a47a4
Fix deserialization
2017-07-23 14:11:07 +02:00
Matthew Honnibal
4fe77bced2
Add cfg attr to pipeline components
2017-07-23 00:52:47 +02:00
Matthew Honnibal
a88a7deffe
Five save/load of textcat config
2017-07-23 00:33:43 +02:00
Matthew Honnibal
b55714d5d1
Make gold_tuples arg optional in begin_training
2017-07-22 20:04:43 +02:00
Matthew Honnibal
b3a749610e
Fix name of TextCategorizer
2017-07-22 01:14:07 +02:00
Matthew Honnibal
a231b56d40
Add text-classification hook to pipeline
2017-07-20 00:18:15 +02:00
Matthew Honnibal
d59fa32df1
Add experimental SimilarityHook omponent
2017-06-05 15:40:03 +02:00
Matthew Honnibal
b3b5521625
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
2017-06-04 20:17:18 -05:00
Matthew Honnibal
7b2ede783d
Add SP tag to tag map if missing
2017-06-04 20:16:30 -05:00
Matthew Honnibal
516798e9fc
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
2017-06-05 01:35:21 +02:00
Matthew Honnibal
193bf913c0
Set is_tagged=True after tagging
2017-06-05 01:35:07 +02:00
Matthew Honnibal
b78cc318c3
Fix loading of morphology exceptions
2017-06-04 16:34:32 -05:00
Matthew Honnibal
3680c51b8f
Avoid clobbering preset POS tags
2017-06-04 15:52:42 -05:00
ines
1b593bbd6d
Fix encoding on tagger serialization
2017-06-02 17:29:21 +02:00
Matthew Honnibal
5f4d328e2c
Fix serialization of tag_map in NeuralTagger
2017-06-02 10:18:37 -05:00
Matthew Honnibal
307d615c5f
Fix serialization for tagger when tag_map has changed
2017-06-01 12:18:36 -05:00
ines
7a2380f617
Rename "nn_tagger" to "tagger"
2017-06-01 17:37:53 +02:00
Matthew Honnibal
5eae3b9a1e
Fix to/from disk in tagger
2017-06-01 04:55:49 -05:00
Matthew Honnibal
53d00a0371
Move weight serialization to Thinc
2017-06-01 03:04:36 -05:00
Matthew Honnibal
ae8010b526
Move weight serialization to Thinc
2017-06-01 02:56:12 -05:00
Matthew Honnibal
33e5ec737f
Fix to/from disk methods
2017-05-31 13:43:10 +02:00
Matthew Honnibal
293d1b425b
Serialize in consistent order
2017-05-29 17:53:06 -05:00
Matthew Honnibal
6522ea6c8b
More serialization fixes. Still broken
2017-05-29 13:23:47 -05:00
Matthew Honnibal
aa4c33914b
Work on serialization
2017-05-29 08:40:45 -05:00
Matthew Honnibal
ff26aa6c37
Work on to/from bytes/disk serialization methods
2017-05-29 11:45:45 +02:00
Matthew Honnibal
6b019b0540
Update to/from bytes methods
2017-05-29 10:14:20 +02:00
Matthew Honnibal
6dad4117ad
Work on serialization for models
2017-05-29 01:37:57 +02:00
Matthew Honnibal
8a24c60c1e
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
2017-05-28 08:12:05 -05:00
Matthew Honnibal
bc97bc292c
Fix __call__ method
2017-05-28 08:11:58 -05:00
Matthew Honnibal
c1263a844b
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
2017-05-27 18:32:57 -05:00
Matthew Honnibal
9e711c3476
Divide d_loss by batch size
2017-05-27 18:32:46 -05:00
Matthew Honnibal
34bbad8e0e
Add __reduce__ methods on parser subclasses. Fixes pickling.
2017-05-27 15:46:06 -05:00
Matthew Honnibal
467bbeadb8
Add hidden layers for tagger
2017-05-24 20:09:51 -05:00
Matthew Honnibal
5b67bcbee0
Increase default embed size to 7500
2017-05-23 15:20:16 -05:00
Matthew Honnibal
3959d778ac
Revert "Revert "WIP on improving parser efficiency""
...
This reverts commit 532afef4a8
.
2017-05-23 03:06:53 -05:00
Matthew Honnibal
532afef4a8
Revert "WIP on improving parser efficiency"
...
This reverts commit bdaac7ab44
.
2017-05-23 03:05:25 -05:00
Matthew Honnibal
bdaac7ab44
WIP on improving parser efficiency
2017-05-23 02:59:31 -05:00
Matthew Honnibal
a7ee63c0ac
Fix labeller loss for unseen labels
2017-05-22 10:41:20 -05:00
Matthew Honnibal
83ffd16474
Fix offset calculation for other negative values
2017-05-22 08:00:53 -05:00
Matthew Honnibal
b45b4aa392
PseudoProjectivity --> nonproj
2017-05-22 05:17:44 -05:00
Matthew Honnibal
8d1e64be69
Add experimental NeuralLabeller
2017-05-22 04:51:08 -05:00
Matthew Honnibal
9b1b0742fd
Fix prediction for tok2vec
2017-05-22 04:51:08 -05:00
Matthew Honnibal
5db89053aa
Merge docstrings
2017-05-21 13:46:23 -05:00
Matthew Honnibal
180e5afede
Fix tokvecs flattening in pipeline
2017-05-21 09:05:34 -05:00
ines
99b631617d
Reformat docstrings
2017-05-21 13:32:15 +02:00
ines
d82ae9a585
Change "function" to "callable" in docs
2017-05-21 13:17:40 +02:00
Matthew Honnibal
3b7c108246
Pass tokvecs through as a list, instead of concatenated. Also fix padding
2017-05-20 13:23:32 -05:00
Matthew Honnibal
d52b65aec2
Revert "Move to contiguous buffer for token_ids and d_vectors"
...
This reverts commit 3ff8c35a79
.
2017-05-20 11:26:23 -05:00
Matthew Honnibal
3ff8c35a79
Move to contiguous buffer for token_ids and d_vectors
2017-05-20 04:17:30 -05:00
Matthew Honnibal
c12ab47a56
Remove state argument in pipeline. Other changes
2017-05-19 13:26:36 -05:00
ines
0fc05e54e4
Document TokenVectorEncoder
2017-05-19 00:00:02 +02:00
Matthew Honnibal
c2c825127a
Fix use_params and pipe methods
2017-05-18 08:30:59 -05:00
Matthew Honnibal
b460533827
Bug fixes to pipeline
2017-05-18 04:29:51 -05:00
Matthew Honnibal
692bd2a186
Bug fix to tagger: wasnt backproping to token vectors
2017-05-17 13:13:14 +02:00
Matthew Honnibal
793430aa7a
Get spaCy train command working with neural network
...
* Integrate models into pipeline
* Add basic serialization (maybe incorrect)
* Fix pickle on vocab
2017-05-17 12:04:50 +02:00
Matthew Honnibal
8cf097ca88
Redesign training to integrate NN components
...
* Obsolete .parser, .entity etc names in favour of .pipeline
* Components no longer create models on initialization
* Models created by loading method (from_disk(), from_bytes() etc), or
.begin_training()
* Add .predict(), .set_annotations() methods in components
* Pass state through pipeline, to allow components to share information
more flexibly.
2017-05-16 16:17:30 +02:00
Matthew Honnibal
5211645af3
Get data flowing through pipeline. Needs redesign
2017-05-16 11:21:59 +02:00
Matthew Honnibal
a9edb3aa1d
Improve integration of NN parser, to support unified training API
2017-05-15 21:53:27 +02:00
Matthew Honnibal
4b9d69f428
Merge branch 'v2' into develop
...
* Move v2 parser into nn_parser.pyx
* New TokenVectorEncoder class in pipeline.pyx
* New spacy/_ml.py module
Currently the two parsers live side-by-side, until we figure out how to
organize them.
2017-05-14 01:10:23 +02:00
Matthew Honnibal
5cac951a16
Move new parser to nn_parser.pyx, and restore old parser, to make tests pass.
2017-05-14 00:55:01 +02:00
Matthew Honnibal
613ba79e2e
Fiddle with sizings for parser
2017-05-13 17:20:23 -05:00
Matthew Honnibal
827b5af697
Update draft of parser neural network model
...
Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU.
Outline of the model:
We first predict context-sensitive vectors for each word in the input:
(embed_lower | embed_prefix | embed_suffix | embed_shape)
>> Maxout(token_width)
>> convolution ** 4
This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features.
To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this
by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a
representation that's one affine transform from this informative lexical information. This is obviously good for the
parser (which backprops to the convolutions too).
The parser model makes a state vector by concatenating the vector representations for its context tokens. Current
results suggest few context tokens works well. Maybe this is a bug.
The current context tokens:
* S0, S1, S2: Top three words on the stack
* B0, B1: First two words of the buffer
* S0L1, S0L2: Leftmost and second leftmost children of S0
* S0R1, S0R2: Rightmost and second rightmost children of S0
* S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0
This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately,
there's a way to structure the computation to save some expense (and make it more GPU friendly).
The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks
with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications
for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden
weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN
-- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model
is so big.)
This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity.
The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved
to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier.
We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle
in CUDA to train.
Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to
be 0 cost. This is defined as:
(exp(score) / Z) - (exp(score) / gZ)
Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly,
but so far this isn't working well.
Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit
greatly from the pre-computation trick.
2017-05-12 16:09:15 -05:00
Matthew Honnibal
b16ae75824
Remove serializer hacks from pipeline classes
2017-05-09 18:16:40 +02:00
Matthew Honnibal
bef89ef23d
Mergery
2017-05-08 08:29:36 -05:00
Matthew Honnibal
94e86ae00a
Predict tags with encoder
2017-05-08 07:53:45 -05:00
Matthew Honnibal
a66a4a4d0f
Replace einsums
2017-05-08 14:46:50 +02:00
Matthew Honnibal
6782eedf9b
Tmp GPU code
2017-05-07 11:04:24 -05:00
Matthew Honnibal
f99f5b75dc
working residual net
2017-05-07 03:57:26 +02:00
Matthew Honnibal
7e04260d38
Data running through, likely errors in model
2017-05-06 14:22:20 +02:00
ines
d24589aa72
Clean up imports, unused code, whitespace, docstrings
2017-04-15 12:05:47 +02:00
ines
561f2a3eb4
Use consistent formatting for docstrings
2017-04-15 11:59:21 +02:00
Matthew Honnibal
354458484c
WIP on add_label bug during NER training
...
Currently when a new label is introduced to NER during training,
it causes the labels to be read in in an unexpected order. This
invalidates the model.
2017-04-14 23:52:17 +02:00
Matthew Honnibal
2f63806ddb
Update config when adding label. Re #910
2017-03-25 22:35:44 +01:00
Raphaël Bournhonesque
f332bf05be
Remove unused import statements
2017-03-21 21:08:54 +01:00
Matthew Honnibal
7769bc31e3
Add beam-search classes
2017-03-15 09:27:41 -05:00
Matthew Honnibal
fa23278ee3
Add classes for beam parser and beam NER
2017-03-11 12:45:37 -06:00
Matthew Honnibal
f77a5bb60a
Switch back to greedy parser
2017-03-11 11:11:30 -06:00
Matthew Honnibal
dcce9ca3f3
Use beam parser
2017-03-11 07:00:20 -06:00
Matthew Honnibal
b86f8af0c1
Fix doc strings
2016-11-01 12:25:36 +01:00
Matthew Honnibal
3e688e6d4b
Fix issue #514 -- serializer fails when new entity type has been added. The fix here is quite ugly. It's best to add the entities ASAP after loading the NLP pipeline, to mitigate the brittleness.
2016-10-23 17:45:44 +02:00
Matthew Honnibal
f787cd29fe
Refactor the pipeline classes to make them more consistent, and remove the redundant blank() constructor.
2016-10-16 21:34:57 +02:00
Matthew Honnibal
4bb73b1a93
Fix parser labels in pipeline
2016-10-16 17:03:22 +02:00
Matthew Honnibal
a079677984
Fix omission of O action when creating blank entity recognizer
2016-10-16 11:43:25 +02:00
Matthew Honnibal
509b30834f
Add a pipeline module, to collect and wrap processes for annotation
2016-10-16 01:47:12 +02:00