* Fix up/download of http and local paths
* Support git_sparse_checkout for assets
* Fix scorer
* Handle already-present directories for git assets
* Improve convert command
* Fix support for existant files in git assets
* Support branches in git sparse checkout
* Format
* Fix git assets
* Document git block in assets
* Fix test
* Fix test
* Revert "Fix test"
This reverts commit cf3097260f.
* Revert "Fix test"
This reverts commit 964d636e27.
* Dont multiply p/r/f by 100
* Display scores * 100 during training
- As much as I dislike YAML, it seemed like a better format here because it allows us to add comments if we want to explain the different recommendations
- Don't include the generated JS in the repo by default and build it on the fly when running or deploying the site. This ensures it's always up to date.
- Simplify jinja_to_js script and use fewer dependencies
* Allow adding pipeline components from source model
* Config: name -> component
* Improve error messages
* Fix error and test
* Add frozen components and exclude logic
* Remove exclude from Language.evaluate
* Init sourced components with current vocab
* Fix error codes
* moving syntax folder to _parser_internals
* moving nn_parser and transition_system
* move nn_parser and transition_system out of internals folder
* moving nn_parser code into transition_system file
* rename transition_system to transition_parser
* moving parser_model and _state to ml
* move _state back to internals
* The Parser now inherits from Pipe!
* small code fixes
* removing unnecessary imports
* remove link_vectors_to_models
* transition_system to internals folder
* little bit more cleanup
* newlines
Move timing into `Language.evaluate` so that only the processing is
timing, not processing + scoring. `Language.evaluate` returns
`scores["speed"]` as words per second, which should be identical to how
the speed was added to the scores previously. Also add the speed to the
evaluate CLI output.
Add and update `score` methods, provided `scores`, and default weights
`default_score_weights` for pipeline components.
* `scores` provides all top-level keys returned by `score` (merely informative, similar to `assigns`).
* `default_score_weights` provides the default weights for a default config.
* The keys from `default_score_weights` determine which values will be
shown in the `spacy train` output, so keys with weight `0.0` will be
displayed but not counted toward the overall score.
* Provide top-level score as `attr_score`
* Provide a description of the score as `attr_score_desc`
* Provide all potential scores keys, setting unused keys to `None`
* Update CLI evaluate accordingly
* Refactor the Scorer to improve flexibility
Refactor the `Scorer` to improve flexibility for arbitrary pipeline
components.
* Individual pipeline components provide their own `evaluate` methods
that score a list of `Example`s and return a dictionary of scores
* `Scorer` is initialized either:
* with a provided pipeline containing components to be scored
* with a default pipeline containing the built-in statistical
components (senter, tagger, morphologizer, parser, ner)
* `Scorer.score` evaluates a list of `Example`s and returns a dictionary
of scores referring to the scores provided by the components in the
pipeline
Significant differences:
* `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc`
and the new `morph_acc`, `pos_acc`, and `lemma_acc`
* Scoring is no longer cumulative: `Scorer.score` scores a list of
examples rather than a single example and does not retain any state
about previously scored examples
* PRF values in the returned scores are no longer multiplied by 100
* Add kwargs to Morphologizer.evaluate
* Create generalized scoring methods in Scorer
* Generalized static scoring methods are added to `Scorer`
* Methods require an attribute (either on Token or Doc) that is
used to key the returned scores
Naming differences:
* `uas`, `las`, and `las_per_type` in the scores dict are renamed to
`dep_uas`, `dep_las`, and `dep_las_per_type`
Scoring differences:
* `Doc.sents` is now scored as spans rather than on sentence-initial
token positions so that `Doc.sents` and `Doc.ents` can be scored with
the same method (this lowers scores since a single incorrect sentence
start results in two incorrect spans)
* Simplify / extend hasattr check for eval method
* Add hasattr check to tokenizer scoring
* Simplify to hasattr check for component scoring
* Reset Example alignment if docs are set
Reset the Example alignment if either doc is set in case the
tokenization has changed.
* Add PRF tokenization scoring for tokens as spans
Add PRF scores for tokens as character spans. The scores are:
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for (token.idx, token.idx + len(token))
* Add docstring to Scorer.score_tokenization
* Rename component.evaluate() to component.score()
* Update Scorer API docs
* Update scoring for positive_label in textcat
* Fix TextCategorizer.score kwargs
* Update Language.evaluate docs
* Update score names in default config
* Update with WIP
* Update with WIP
* Update with pipeline serialization
* Update types and pipe factories
* Add deep merge, tidy up and add tests
* Fix pipe creation from config
* Don't validate default configs on load
* Update spacy/language.py
Co-authored-by: Ines Montani <ines@ines.io>
* Adjust factory/component meta error
* Clean up factory args and remove defaults
* Add test for failing empty dict defaults
* Update pipeline handling and methods
* provide KB as registry function instead of as object
* small change in test to make functionality more clear
* update example script for EL configuration
* Fix typo
* Simplify test
* Simplify test
* splitting pipes.pyx into separate files
* moving default configs to each component file
* fix batch_size type
* removing default values from component constructors where possible (TODO: test 4725)
* skip instead of xfail
* Add test for config -> nlp with multiple instances
* pipeline.pipes -> pipeline.pipe
* Tidy up, document, remove kwargs
* small cleanup/generalization for Tok2VecListener
* use DEFAULT_UPSTREAM field
* revert to avoid circular imports
* Fix tests
* Replace deprecated arg
* Make model dirs require config
* fix pickling of keyword-only arguments in constructor
* WIP: clean up and integrate full config
* Add helper to handle function args more reliably
Now also includes keyword-only args
* Fix config composition and serialization
* Improve config debugging and add visual diff
* Remove unused defaults and fix type
* Remove pipeline and factories from meta
* Update spacy/default_config.cfg
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/default_config.cfg
* small UX edits
* avoid printing stack trace for debug CLI commands
* Add support for language-specific factories
* specify the section of the config which holds the model to debug
* WIP: add Language.from_config
* Update with language data refactor WIP
* Auto-format
* Add backwards-compat handling for Language.factories
* Update morphologizer.pyx
* Fix morphologizer
* Update and simplify lemmatizers
* Fix Japanese tests
* Port over tagger changes
* Fix Chinese and tests
* Update to latest Thinc
* WIP: xfail first Russian lemmatizer test
* Fix component-specific overrides
* fix nO for output layers in debug_model
* Fix default value
* Fix tests and don't pass objects in config
* Fix deep merging
* Fix lemma lookup data registry
Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)
* Add types
* Add Vocab.from_config
* Fix typo
* Fix tests
* Make config copying more elegant
* Fix pipe analysis
* Fix lemmatizers and is_base_form
* WIP: move language defaults to config
* Fix morphology type
* Fix vocab
* Remove comment
* Update to latest Thinc
* Add morph rules to config
* Tidy up
* Remove set_morphology option from tagger factory
* Hack use_gpu
* Move [pipeline] to top-level block and make [nlp.pipeline] list
Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them
* Fix use_gpu and resume in CLI
* Auto-format
* Remove resume from config
* Fix formatting and error
* [pipeline] -> [components]
* Fix types
* Fix tagger test: requires set_morphology?
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Improve tag map initialization and updating
Generalize tag map initialization and updating so that the tag map can
be loaded correctly prior to loading a `Corpus` with `spacy debug-data`
and `spacy train`.
* normalize provided tag map as necessary
* use the same method for initializing and updating the tag map
* Replace rather than update tag map
Replace rather than update tag map when loading a custom tag map.
Updating the tag map is problematic due to the sorted list of tag names
and the fact that the tag map will contain lingering/unwanted tags from
the default tag map.
* Update CLI scripts
* Reinitialize cache after loading new tag map
Reinitialize the cache with the right size after loading a new tag map.
* Improve tag map initialization and updating
Generalize tag map initialization and updating so that a provided tag
map can be loaded correctly in the CLI.
* normalize provided tag map as necessary
* use the same method for initializing and overwriting the tag map
* Reinitialize cache after loading new tag map
Reinitialize the cache with the right size after loading a new tag map.
* adding debug-model to print the internals for debugging purposes
* expend debug-model script with 4 stages: before, init, train, predict
* avoid enforcing to have a seed in the train script
* small fixes
* Update project CLI hashes, directories, skipping
* Improve clone success message
* Remove unused context args
* Move project-specific utils to project utils
The hashing/checksum functions may not end up being general-purpose functions and are more designed for the projects, so they shouldn't live in spacy.util
* Improve run help and add workflows
* Add note re: directory checksum speed
* Fix cloning from subdirectories and output messages
* Remove hard-coded dirs
* Make project command a submodule
* Update with WIP
* Add helper for joining commands
* Update docstrins, formatting and types
* Update assets and add support for copying local files
* Fix type
* Update success messages
* remove _convert_examples
* fix test_gold, raise TypeError if tuples are used instead of Example's
* throwing proper errors when the wrong type of objects are passed
* fix deprectated format in tests
* fix deprectated format in parser tests
* fix tests for NEL, morph, senter, tagger, textcat
* update regression tests with new Example format
* use make_doc
* more fixes to nlp.update calls
* few more small fixes for rehearse and evaluate
* only import ml_datasets if really necessary
* Use cosine loss in Cloze multitask
* Fix char_embed for gpu
* Call resume_training for base model in train CLI
* Fix bilstm_depth default in pretrain command
* Implement character-based pretraining objective
* Use chars loss in ClozeMultitask
* Add method to decode predicted characters
* Fix number characters
* Rescale gradients for mlm
* Fix char embed+vectors in ml
* Fix pipes
* Fix pretrain args
* Move get_characters_loss
* Fix import
* Fix import
* Mention characters loss option in pretrain
* Remove broken 'self attention' option in pretrain
* Revert "Remove broken 'self attention' option in pretrain"
This reverts commit 56b820f6af.
* Document 'characters' objective of pretrain
* Tell convert CLI to store user data for Doc
* Remove assert
* Add has_unknwon_spaces flag on Doc
* Do not tokenize docs with unknown spaces in Corpus
* Handle conversion of unknown spaces in Example
* Fixes
* Fixes
* Draft has_known_spaces support in DocBin
* Add test for serialize has_unknown_spaces
* Fix DocBin serialization when has_unknown_spaces
* Use serialization in test
* fixes in ud_train, UX for morphs
* update pyproject with new version of thinc
* fixes in debug_data script
* cleanup of old unused error messages
* remove obsolete TempErrors
* move error messages to errors.py
* add ENT_KB_ID to default DocBin serialization
* few fixes to simple_ner
* fix tags
* Update errors
* Remove beam for now (maybe)
Remove beam_utils
Update setup.py
Remove beam
* Remove GoldParse
WIP on removing goldparse
Get ArcEager compiling after GoldParse excise
Update setup.py
Get spacy.syntax compiling after removing GoldParse
Rename NewExample -> Example and clean up
Clean html files
Start updating tests
Update Morphologizer
* fix error numbers
* fix merge conflict
* informative error when calling to_array with wrong field
* fix error catching
* fixing language and scoring tests
* start testing get_aligned
* additional tests for new get_aligned function
* Draft create_gold_state for arc_eager oracle
* Fix import
* Fix import
* Remove TokenAnnotation code from nonproj
* fixing NER one-to-many alignment
* Fix many-to-one IOB codes
* fix test for misaligned
* attempt to fix cases with weird spaces
* fix spaces
* test_gold_biluo_different_tokenization works
* allow None as BILUO annotation
* fixed some tests + WIP roundtrip unit test
* add spaces to json output format
* minibatch utiltiy can deal with strings, docs or examples
* fix augment (needs further testing)
* various fixes in scripts - needs to be further tested
* fix test_cli
* cleanup
* correct silly typo
* add support for MORPH in to/from_array, fix morphologizer overfitting test
* fix tagger
* fix entity linker
* ensure test keeps working with non-linked entities
* pipe() takes docs, not examples
* small bug fix
* textcat bugfix
* throw informative error when running the components with the wrong type of objects
* fix parser tests to work with example (most still failing)
* fix BiluoPushDown parsing entities
* small fixes
* bugfix tok2vec
* fix renames and simple_ner labels
* various small fixes
* prevent writing dummy values like deps because that could interfer with sent_start values
* fix the fix
* implement split_sent with aligned SENT_START attribute
* test for split sentences with various alignment issues, works
* Return ArcEagerGoldParse from ArcEager
* Update parser and NER gold stuff
* Draft new GoldCorpus class
* add links to to_dict
* clean up
* fix test checking for variants
* Fix oracles
* Start updating converters
* Move converters under spacy.gold
* Move things around
* Fix naming
* Fix name
* Update converter to produce DocBin
* Update converters
* Allow DocBin to take list of Doc objects.
* Make spacy convert output docbin
* Fix import
* Fix docbin
* Fix compile in ArcEager
* Fix import
* Serialize all attrs by default
* Update converter
* Remove jsonl converter
* Add json2docs converter
* Draft Corpus class for DocBin
* Work on train script
* Update Corpus
* Update DocBin
* Allocate Doc before starting to add words
* Make doc.from_array several times faster
* Update train.py
* Fix Corpus
* Fix parser model
* Start debugging arc_eager oracle
* Update header
* Fix parser declaration
* Xfail some tests
* Skip tests that cause crashes
* Skip test causing segfault
* Remove GoldCorpus
* Update imports
* Update after removing GoldCorpus
* Fix module name of corpus
* Fix mimport
* Work on parser oracle
* Update arc_eager oracle
* Restore ArcEager.get_cost function
* Update transition system
* Update test_arc_eager_oracle
* Remove beam test
* Update test
* Unskip
* Unskip tests
* add links to to_dict
* clean up
* fix test checking for variants
* Allow DocBin to take list of Doc objects.
* Fix compile in ArcEager
* Serialize all attrs by default
Move converters under spacy.gold
Move things around
Fix naming
Fix name
Update converter to produce DocBin
Update converters
Make spacy convert output docbin
Fix import
Fix docbin
Fix import
Update converter
Remove jsonl converter
Add json2docs converter
* Allocate Doc before starting to add words
* Make doc.from_array several times faster
* Start updating converters
* Work on train script
* Draft Corpus class for DocBin
Update Corpus
Fix Corpus
* Update DocBin
Add missing strings when serializing
* Update train.py
* Fix parser model
* Start debugging arc_eager oracle
* Update header
* Fix parser declaration
* Xfail some tests
Skip tests that cause crashes
Skip test causing segfault
* Remove GoldCorpus
Update imports
Update after removing GoldCorpus
Fix module name of corpus
Fix mimport
* Work on parser oracle
Update arc_eager oracle
Restore ArcEager.get_cost function
Update transition system
* Update tests
Remove beam test
Update test
Unskip
Unskip tests
* Add get_aligned_parse method in Example
Fix Example.get_aligned_parse
* Add kwargs to Corpus.dev_dataset to match train_dataset
* Update nonproj
* Use get_aligned_parse in ArcEager
* Add another arc-eager oracle test
* Remove Example.doc property
Remove Example.doc
Remove Example.doc
Remove Example.doc
Remove Example.doc
* Update ArcEager oracle
Fix Break oracle
* Debugging
* Fix Corpus
* Fix eg.doc
* Format
* small fixes
* limit arg for Corpus
* fix test_roundtrip_docs_to_docbin
* fix test_make_orth_variants
* fix add_label test
* Update tests
* avoid writing temp dir in json2docs, fixing 4402 test
* Update test
* Add missing costs to NER oracle
* Update test
* Work on Example.get_aligned_ner method
* Clean up debugging
* Xfail tests
* Remove prints
* Remove print
* Xfail some tests
* Replace unseen labels for parser
* Update test
* Update test
* Xfail test
* Fix Corpus
* fix imports
* fix docs_to_json
* various small fixes
* cleanup
* Support gold_preproc in Corpus
* Support gold_preproc
* Pass gold_preproc setting into corpus
* Remove debugging
* Fix gold_preproc
* Fix json2docs converter
* Fix convert command
* Fix flake8
* Fix import
* fix output_dir (converted to Path by typer)
* fix var
* bugfix: update states after creating golds to avoid out of bounds indexing
* Improve efficiency of ArEager oracle
* pull merge_sent into iob2docs to avoid Doc creation for each line
* fix asserts
* bugfix excl Span.end in iob2docs
* Support max_length in Corpus
* Fix arc_eager oracle
* Filter out uannotated sentences in NER
* Remove debugging in parser
* Simplify NER alignment
* Fix conversion of NER data
* Fix NER init_gold_batch
* Tweak efficiency of precomputable affine
* Update onto-json default
* Update gold test for NER
* Fix parser test
* Update test
* Add NER data test
* Fix convert for single file
* Fix test
* Hack scorer to avoid evaluating non-nered data
* Fix handling of NER data in Example
* Output unlabelled spans from O biluo tags in iob_utils
* Fix unset variable
* Return kept examples from init_gold_batch
* Return examples from init_gold_batch
* Dont return Example from init_gold_batch
* Set spaces on gold doc after conversion
* Add test
* Fix spaces reading
* Improve NER alignment
* Improve handling of missing values in NER
* Restore the 'cutting' in parser training
* Add assertion
* Print epochs
* Restore random cuts in parser/ner training
* Implement Doc.copy
* Implement Example.copy
* Copy examples at the start of Language.update
* Don't unset example docs
* Tweak parser model slightly
* attempt to fix _guess_spaces
* _add_entities_to_doc first, so that links don't get overwritten
* fixing get_aligned_ner for one-to-many
* fix indexing into x_text
* small fix biluo_tags_from_offsets
* Add onto-ner config
* Simplify NER alignment
* Fix NER scoring for partially annotated documents
* fix indexing into x_text
* fix test_cli failing tests by ignoring spans in doc.ents with empty label
* Fix limit
* Improve NER alignment
* Fix count_train
* Remove print statement
* fix tests, we're not having nothing but None
* fix clumsy fingers
* Fix tests
* Fix doc.ents
* Remove empty docs in Corpus and improve limit
* Update config
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
* verbose and tag_map options
* adding init_tok2vec option and only changing the tok2vec that is specified
* adding omit_extra_lookups and verifying textcat config
* wip
* pretrain bugfix
* add replace and resume options
* train_textcat fix
* raw text functionality
* improve UX when KeyError or when input data can't be parsed
* avoid unnecessary access to goldparse in TextCat pipe
* save performance information in nlp.meta
* add noise_level to config
* move nn_parser's defaults to config file
* multitask in config - doesn't work yet
* scorer offering both F and AUC options, need to be specified in config
* add textcat verification code from old train script
* small fixes to config files
* clean up
* set default config for ner/parser to allow create_pipe to work as before
* two more test fixes
* small fixes
* cleanup
* fix NER pickling + additional unit test
* create_pipe as before
Updates from #5362 and fix from #5387:
* `train`:
* if training on GPU, only run evaluation/timing on CPU in the first
iteration
* if training is aborted, exit with a non-0 exit status
* Tidy up train-from-config a bit
* Fix accidentally quadratic perf in TokenAnnotation.brackets
When we're reading in the gold data, we had a nested loop where
we looped over the brackets for each token, looking for brackets
that start on that word. This is accidentally quadratic, because
we have one bracket per word (for the POS tags). So we had
an O(N**2) behaviour here that ended up being pretty slow.
To solve this I'm indexing the brackets by their starting word
on the TokenAnnotations object, and having a property to provide
the previous view.
* Fixes
* setting KB in the EL constructor, similar to how the model is passed on
* removing wikipedia example files - moved to projects
* throw an error when nlp.update is called with 2 positional arguments
* rewriting the config logic in create pipe to accomodate for other objects (e.g. KB) in the config
* update config files with new parameters
* avoid training pipeline components that don't have a model (like sentencizer)
* various small fixes + UX improvements
* small fixes
* set thinc to 8.0.0a9 everywhere
* remove outdated comment
* Reduce stored lexemes data, move feats to lookups
* Move non-derivable lexemes features (`norm / cluster / prob`) to
`spacy-lookups-data` as lookups
* Get/set `norm` in both lookups and `LexemeC`, serialize in lookups
* Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in
lookups only
* Remove serialization of lexemes data as `vocab/lexemes.bin`
* Remove `SerializedLexemeC`
* Remove `Lexeme.to_bytes/from_bytes`
* Modify normalization exception loading:
* Always create `Vocab.lookups` table `lexeme_norm` for
normalization exceptions
* Load base exceptions from `lang.norm_exceptions`, but load
language-specific exceptions from lookups
* Set `lex_attr_getter[NORM]` including new lookups table in
`BaseDefaults.create_vocab()` and when deserializing `Vocab`
* Remove all cached lexemes when deserializing vocab to override
existing normalizations with the new normalizations (as a replacement
for the previous step that replaced all lexemes data with the
deserialized data)
* Skip English normalization test
Skip English normalization test because the data is now in
`spacy-lookups-data`.
* Remove norm exceptions
Moved to spacy-lookups-data.
* Move norm exceptions test to spacy-lookups-data
* Load extra lookups from spacy-lookups-data lazily
Load extra lookups (currently for cluster and prob) lazily from the
entry point `lg_extra` as `Vocab.lookups_extra`.
* Skip creating lexeme cache on load
To improve model loading times, do not create the full lexeme cache when
loading. The lexemes will be created on demand when processing.
* Identify numeric values in Lexeme.set_attrs()
With the removal of a special case for `PROB`, also identify `float` to
avoid trying to convert it with the `StringStore`.
* Skip lexeme cache init in from_bytes
* Unskip and update lookups tests for python3.6+
* Update vocab pickle to include lookups_extra
* Update vocab serialization tests
Check strings rather than lexemes since lexemes aren't initialized
automatically, account for addition of "_SP".
* Re-skip lookups test because of python3.5
* Skip PROB/float values in Lexeme.set_attrs
* Convert is_oov from lexeme flag to lex in vectors
Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether
the lexeme has a vector.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* make disable_pipes deprecated in favour of the new toggle_pipes
* rewrite disable_pipes statements
* update documentation
* remove bin/wiki_entity_linking folder
* one more fix
* remove deprecated link to documentation
* few more doc fixes
* add note about name change to the docs
* restore original disable_pipes
* small fixes
* fix typo
* fix error number to W096
* rename to select_pipes
* also make changes to the documentation
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Draft layer for BILUO actions
* Fixes to biluo layer
* WIP on BILUO layer
* Add tests for BILUO layer
* Format
* Fix transitions
* Update test
* Link in the simple_ner
* Update BILUO tagger
* Update __init__
* Import simple_ner
* Update test
* Import
* Add files
* Add config
* Fix label passing for BILUO and tagger
* Fix label handling for simple_ner component
* Update simple NER test
* Update config
* Hack train script
* Update BILUO layer
* Fix SimpleNER component
* Update train_from_config
* Add biluo_to_iob helper
* Add IOB layer
* Add IOBTagger model
* Update biluo layer
* Update SimpleNER tagger
* Update BILUO
* Read random seed in train-from-config
* Update use of normal_init
* Fix normalization of gradient in SimpleNER
* Update IOBTagger
* Remove print
* Tweak masking in BILUO
* Add dropout in SimpleNER
* Update thinc
* Tidy up simple_ner
* Fix biluo model
* Unhack train-from-config
* Update setup.cfg and requirements
* Add tb_framework.py for parser model
* Try to avoid memory leak in BILUO
* Move ParserModel into spacy.ml, avoid need for subclass.
* Use updated parser model
* Remove incorrect call to model.initializre in PrecomputableAffine
* Update parser model
* Avoid divide by zero in tagger
* Add extra dropout layer in tagger
* Refine minibatch_by_words function to avoid oom
* Fix parser model after refactor
* Try to avoid div-by-zero in SimpleNER
* Fix infinite loop in minibatch_by_words
* Use SequenceCategoricalCrossentropy in Tagger
* Fix parser model when hidden layer
* Remove extra dropout from tagger
* Add extra nan check in tagger
* Fix thinc version
* Update tests and imports
* Fix test
* Update test
* Update tests
* Fix tests
* Fix test
Co-authored-by: Ines Montani <ines@ines.io>
Check that row is within bounds for the vector data array when adding a
vector.
Don't add vectors with rank OOV_RANK in `init-model` (change is due to
shift from OOV as 0 to OOV as OOV_RANK).
* `debug-data`: determine coverage of provided vectors
* `evaluate`: support `blank:lg` model to make it possible to just evaluate
tokenization
* `init-model`: add option to truncate vectors to N most frequent vectors
from word2vec file
* `train`:
* if training on GPU, only run evaluation/timing on CPU in the first
iteration
* if training is aborted, exit with a non-0 exit status
* Use max(uint64) for OOV lexeme rank
* Add test for default OOV rank
* Revert back to thinc==7.4.0
Requiring the updated version of thinc was unnecessary.
* Define OOV_RANK in one place
Define OOV_RANK in one place in `util`.
* Fix formatting [ci skip]
* Switch to external definitions of max(uint64)
Switch to external defintions of max(uint64) and confirm that they are
equal.
* Fixed typo in cli warning
Fixed a typo in the warning for the provision of exactly two labels, which have not been designated as binary, to textcat.
* Create and signed contributor form
* Add pos and morph scoring to Scorer
Add pos, morph, and morph_per_type to `Scorer`. Report pos and morph
accuracy in `spacy evaluate`.
* Update morphologizer for v3
* switch to tagger-based morphologizer
* use `spacy.HashCharEmbedCNN` for morphologizer defaults
* add `Doc.is_morphed` flag
* Add morphologizer to train CLI
* Add basic morphologizer pipeline tests
* Add simple morphologizer training example
* Remove subword_features from CharEmbed models
Remove `subword_features` argument from `spacy.HashCharEmbedCNN.v1` and
`spacy.HashCharEmbedBiLSTM.v1` since in these cases `subword_features`
is always `False`.
* Rename setting in morphologizer example
Use `with_pos_tags` instead of `without_pos_tags`.
* Fix kwargs for spacy.HashCharEmbedBiLSTM.v1
* Remove defaults for spacy.HashCharEmbedBiLSTM.v1
Remove default `nM/nC` for `spacy.HashCharEmbedBiLSTM.v1`.
* Set random seed for textcat overfitting test
* Omit per_type scores from model-best calculations
The addition of per_type scores to the included metrics (#4911) causes
errors when they're compared while determining the best model, so omit
them for this `max()` comparison.
* Add default speed data for interrupted train CLI
Add better speed meta defaults so that an interrupted iteration still
produces a best model.
Co-authored-by: Ines Montani <ines@ines.io>
* Update sentence recognizer
* rename `sentrec` to `senter`
* use `spacy.HashEmbedCNN.v1` by default
* update to follow `Tagger` modifications
* remove component methods that can be inherited from `Tagger`
* add simple initialization and overfitting pipeline tests
* Update serialization test for senter
* Fix model-final/model-best meta
* include speed and accuracy from final iteration
* combine with speeds from base model if necessary
* Include token_acc metric for all components
* fix grad_clip naming
* cleaning up pretrained_vectors out of cfg
* further refactoring Model init's
* move Model building out of pipes
* further refactor to require a model config when creating a pipe
* small fixes
* making cfg in nn_parser more consistent
* fixing nr_class for parser
* fixing nn_parser's nO
* fix printing of loss
* architectures in own file per type, consistent naming
* convenience methods default_tagger_config and default_tok2vec_config
* let create_pipe access default config if available for that component
* default_parser_config
* move defaults to separate folder
* allow reading nlp from package or dir with argument 'name'
* architecture spacy.VocabVectors.v1 to read static vectors from file
* cleanup
* default configs for nel, textcat, morphologizer, tensorizer
* fix imports
* fixing unit tests
* fixes and clean up
* fixing defaults, nO, fix unit tests
* restore parser IO
* fix IO
* 'fix' serialization test
* add *.cfg to manifest
* fix example configs with additional arguments
* replace Morpohologizer with Tagger
* add IO bit when testing overfitting of tagger (currently failing)
* fix IO - don't initialize when reading from disk
* expand overfitting tests to also check IO goes OK
* remove dropout from HashEmbed to fix Tagger performance
* add defaults for sentrec
* update thinc
* always pass a Model instance to a Pipe
* fix piped_added statement
* remove obsolete W029
* remove obsolete errors
* restore byte checking tests (work again)
* clean up test
* further test cleanup
* convert from config to Model in create_pipe
* bring back error when component is not initialized
* cleanup
* remove calls for nlp2.begin_training
* use thinc.api in imports
* allow setting charembed's nM and nC
* fix for hardcoded nM/nC + unit test
* formatting fixes
* trigger build
* Add convert CLI option to merge CoNLL-U subtokens
Add `-T` option to convert CLI that merges CoNLL-U subtokens into one
token in the converted data. Each CoNLL-U sentence is read into a `Doc`
and the `Retokenizer` is used to merge subtokens with features as
follows:
* `orth` is the merged token orth (should correspond to raw text and `#
text`)
* `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET`
* `pos` is the POS of the syntactic root of the span (as determined by
the Retokenizer)
* `morph` is all morphological features merged
* `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o`
* with `-m` all morphological features are combined with the tag using
the separator `__`, e.g.
`ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art`
* `dep` is the dependency relation for the syntactic root of the span
(as determined by the Retokenizer)
Concatenated tags will be mapped to the UD POS of the syntactic root
(e.g., `ADP`) and the morphological features will be the combined
features.
In many cases, the original UD subtokens can be reconstructed from the
available features given a language-specific lookup table, e.g.,
Portuguese `do / ADP_DET /
Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o /
DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules
for forms containing open class words like Spanish `hablarlo / VERB_PRON
/
Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`.
* Clean up imports
* Add load_from_config function
* Add train_from_config script
* Merge configs and expose via spacy.config
* Fix script
* Suggest create_evaluation_callback
* Hard-code for NER
* Fix errors
* Register command
* Add TODO
* Update train-from-config todos
* Fix imports
* Allow delayed setting of parser model nr_class
* Get train-from-config working
* Tidy up and fix scores and printing
* Hide traceback if cancelled
* Fix weighted score formatting
* Fix score formatting
* Make output_path optional
* Add Tok2Vec component
* Tidy up and add tok2vec_tensors
* Add option to copy docs in nlp.update
* Copy docs in nlp.update
* Adjust nlp.update() for set_annotations
* Don't shuffle pipes in nlp.update, decruft
* Support set_annotations arg in component update
* Support set_annotations in parser update
* Add get_gradients method
* Add get_gradients to parser
* Update errors.py
* Fix problems caused by merge
* Add _link_components method in nlp
* Add concept of 'listeners' and ControlledModel
* Support optional attributes arg in ControlledModel
* Try having tok2vec component in pipeline
* Fix tok2vec component
* Fix config
* Fix tok2vec
* Update for Example
* Update for Example
* Update config
* Add eg2doc util
* Update and add schemas/types
* Update schemas
* Fix nlp.update
* Fix tagger
* Remove hacks from train-from-config
* Remove hard-coded config str
* Calculate loss in tok2vec component
* Tidy up and use function signatures instead of models
* Support union types for registry models
* Minor cleaning in Language.update
* Make ControlledModel specifically Tok2VecListener
* Fix train_from_config
* Fix tok2vec
* Tidy up
* Add function for bilstm tok2vec
* Fix type
* Fix syntax
* Fix pytorch optimizer
* Add example configs
* Update for thinc describe changes
* Update for Thinc changes
* Update for dropout/sgd changes
* Update for dropout/sgd changes
* Unhack gradient update
* Work on refactoring _ml
* Remove _ml.py module
* WIP upgrade cli scripts for thinc
* Move some _ml stuff to util
* Import link_vectors from util
* Update train_from_config
* Import from util
* Import from util
* Temporarily add ml.component_models module
* Move ml methods
* Move typedefs
* Update load vectors
* Update gitignore
* Move imports
* Add PrecomputableAffine
* Fix imports
* Fix imports
* Fix imports
* Fix missing imports
* Update CLI scripts
* Update spacy.language
* Add stubs for building the models
* Update model definition
* Update create_default_optimizer
* Fix import
* Fix comment
* Update imports in tests
* Update imports in spacy.cli
* Fix import
* fix obsolete thinc imports
* update srsly pin
* from thinc to ml_datasets for example data such as imdb
* update ml_datasets pin
* using STATE.vectors
* small fix
* fix Sentencizer.pipe
* black formatting
* rename Affine to Linear as in thinc
* set validate explicitely to True
* rename with_square_sequences to with_list2padded
* rename with_flatten to with_list2array
* chaining layernorm
* small fixes
* revert Optimizer import
* build_nel_encoder with new thinc style
* fixes using model's get and set methods
* Tok2Vec in component models, various fixes
* fix up legacy tok2vec code
* add model initialize calls
* add in build_tagger_model
* small fixes
* setting model dims
* fixes for ParserModel
* various small fixes
* initialize thinc Models
* fixes
* consistent naming of window_size
* fixes, removing set_dropout
* work around Iterable issue
* remove legacy tok2vec
* util fix
* fix forward function of tok2vec listener
* more fixes
* trying to fix PrecomputableAffine (not succesful yet)
* alloc instead of allocate
* add morphologizer
* rename residual
* rename fixes
* Fix predict function
* Update parser and parser model
* fixing few more tests
* Fix precomputable affine
* Update component model
* Update parser model
* Move backprop padding to own function, for test
* Update test
* Fix p. affine
* Update NEL
* build_bow_text_classifier and extract_ngrams
* Fix parser init
* Fix test add label
* add build_simple_cnn_text_classifier
* Fix parser init
* Set gpu off by default in example
* Fix tok2vec listener
* Fix parser model
* Small fixes
* small fix for PyTorchLSTM parameters
* revert my_compounding hack (iterable fixed now)
* fix biLSTM
* Fix uniqued
* PyTorchRNNWrapper fix
* small fixes
* use helper function to calculate cosine loss
* small fixes for build_simple_cnn_text_classifier
* putting dropout default at 0.0 to ensure the layer gets built
* using thinc util's set_dropout_rate
* moving layer normalization inside of maxout definition to optimize dropout
* temp debugging in NEL
* fixed NEL model by using init defaults !
* fixing after set_dropout_rate refactor
* proper fix
* fix test_update_doc after refactoring optimizers in thinc
* Add CharacterEmbed layer
* Construct tagger Model
* Add missing import
* Remove unused stuff
* Work on textcat
* fix test (again :)) after optimizer refactor
* fixes to allow reading Tagger from_disk without overwriting dimensions
* don't build the tok2vec prematuraly
* fix CharachterEmbed init
* CharacterEmbed fixes
* Fix CharacterEmbed architecture
* fix imports
* renames from latest thinc update
* one more rename
* add initialize calls where appropriate
* fix parser initialization
* Update Thinc version
* Fix errors, auto-format and tidy up imports
* Fix validation
* fix if bias is cupy array
* revert for now
* ensure it's a numpy array before running bp in ParserStepModel
* no reason to call require_gpu twice
* use CupyOps.to_numpy instead of cupy directly
* fix initialize of ParserModel
* remove unnecessary import
* fixes for CosineDistance
* fix device renaming
* use refactored loss functions (Thinc PR 251)
* overfitting test for tagger
* experimental settings for the tagger: avoid zero-init and subword normalization
* clean up tagger overfitting test
* use previous default value for nP
* remove toy config
* bringing layernorm back (had a bug - fixed in thinc)
* revert setting nP explicitly
* remove setting default in constructor
* restore values as they used to be
* add overfitting test for NER
* add overfitting test for dep parser
* add overfitting test for textcat
* fixing init for linear (previously affine)
* larger eps window for textcat
* ensure doc is not None
* Require newer thinc
* Make float check vaguer
* Slop the textcat overfit test more
* Fix textcat test
* Fix exclusive classes for textcat
* fix after renaming of alloc methods
* fixing renames and mandatory arguments (staticvectors WIP)
* upgrade to thinc==8.0.0.dev3
* refer to vocab.vectors directly instead of its name
* rename alpha to learn_rate
* adding hashembed and staticvectors dropout
* upgrade to thinc 8.0.0.dev4
* add name back to avoid warning W020
* thinc dev4
* update srsly
* using thinc 8.0.0a0 !
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
Improve train CLI with a provided base model so that you can:
* add a new component
* extend an existing component
* replace an existing component
When the final model and best model are saved, reenable any disabled
components and merge the meta information to include the full pipeline
and accuracy information for all components in the base model plus the
newly added components if needed.
Instead of a hard-coded NER tag simplification function that was only
intended for NorNE, map NER tags in CoNLL-U converter using a dict
provided as JSON as a command-line option.
Map NER entity types or new tag or to "" for 'O', e.g.:
```
{"PER": "PERSON", "BAD": ""}
=>
B-PER -> B-PERSON
B-BAD -> O
```
* Add sent_starts to GoldParse
* Add SentTagger pipeline component
Add `SentTagger` pipeline component as a subclass of `Tagger`.
* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
* S (1): token at beginning of sentence
* I (0): all other sentence positions
* Sets `token.sent_start` values
* Add sentence segmentation to Scorer
Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.
* Add sentence segmentation to CLI evaluate
* Add senttagger metrics/scoring to train CLI
* Rename SentTagger to SentenceRecognizer
* Add SentenceRecognizer to spacy.pipes imports
* Add SentenceRecognizer serialization test
* Shorten component name to sentrec
* Remove duplicates from train CLI output metrics
* Switch to train_dataset() function in train CLI
* Fixes for pipe() methods in pipeline components
* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`
* Update Parser.pipe() for Examples
* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s
* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)
* Fixes to Example implementation in spacy.gold
* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`
* Head of 0 are not treated as unset
* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)
* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example
* Don't clobber `examples` variable in `iter_gold_docs()`
* Add/modify gold tests for handling projectivity
* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)
* Add test for projective train vs. nonprojective dev versions of the
same `Doc`
* Handle ignore_misaligned as arg rather than attr
Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.
Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).
* Remove unused attrs from gold.pxd
Remove `ignore_misaligned` and `make_projective` from `gold.pxd`
* Restructure Example with merged sents as default
An `Example` now includes a single `TokenAnnotation` that includes all
the information from one `Doc` (=JSON `paragraph`). If required, the
individual sentences can be returned as a list of examples with
`Example.split_sents()` with no raw text available.
* Input/output a single `Example.token_annotation`
* Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries
* Replace `Example.merge_sents()` with `Example.split_sents()`
* Modify components to use a single `Example.token_annotation`
* Pipeline components
* conllu2json converter
* Rework/rename `add_token_annotation()` and `add_doc_annotation()` to
`set_token_annotation()` and `set_doc_annotation()`, functions that set
rather then appending/extending.
* Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse`
* Add getters to `TokenAnnotation` to supply default values when a given
attribute is not available
* `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only
applied on single examples, so the `GoldParse` is returned saved in the
provided `Example` rather than creating a new `Example` with no other
internal annotation
* Update tests for API changes and `merge_sents()` vs. `split_sents()`
* Refer to Example.goldparse in iter_gold_docs()
Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError
* Fix make_orth_variants()
Fix bug in make_orth_variants() related to conversion from multiple to
one TokenAnnotation per Example.
* Add basic test for make_orth_variants()
* Replace try/except with conditionals
* Replace default morph value with set
* Switch to train_dataset() function in train CLI
* Fixes for pipe() methods in pipeline components
* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`
* Update Parser.pipe() for Examples
* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s
* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)
* Fixes to Example implementation in spacy.gold
* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`
* Head of 0 are not treated as unset
* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)
* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example
* Don't clobber `examples` variable in `iter_gold_docs()`
* Add/modify gold tests for handling projectivity
* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)
* Add test for projective train vs. nonprojective dev versions of the
same `Doc`
* Handle ignore_misaligned as arg rather than attr
Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.
Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).
* Remove unused attrs from gold.pxd
Remove `ignore_misaligned` and `make_projective` from `gold.pxd`
* Refer to Example.goldparse in iter_gold_docs()
Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError
* Update test for ignore_misaligned
* Generalize handling of tokenizer special cases
Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.
Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:
* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes
Existing tests/settings that couldn't be preserved as before:
* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again
When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.
* Remove accidentally added test case
* Really remove accidentally added test
* Reload special cases when necessary
Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.
* Update error code number
* Fix offset and whitespace in Matcher special cases
* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case
* Improve cache flushing in tokenizer
* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21
* Remove reinitialized PreshMaps on cache flush
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Use special Matcher only for cases with affixes
* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
* Additionally include specials cache checks while splitting on infixes
* Since the special Matcher needs consistent affix-only tokenization
for the special cases themselves, introduce the argument
`with_special_cases` in order to do tokenization with or without
specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes
* Replace PhraseMatcher with Aho-Corasick
Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.
The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.
Fixes#4308.
* Restore support for pickling
* Fix internal keyword add/remove for numpy arrays
* Add test for #4248, clean up test
* Improve efficiency of special cases handling
* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
* Process merge/splits in one pass without repeated token shifting
* Merge in place if no splits
* Update error message number
* Remove UD script modifications
Only used for timing/testing, should be a separate PR
* Remove final traces of UD script modifications
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Add missing loop for match ID set in search loop
* Remove cruft in matching loop for partial matches
There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.
* Replace dict trie with MapStruct trie
* Fix how match ID hash is stored/added
* Update fix for match ID vocab
* Switch from map_get_unless_missing to map_get
* Switch from numpy array to Token.get_struct_attr
Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.
Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)
* Restructure imports to export find_matches
* Implement full remove()
Remove unnecessary trie paths and free unused maps.
Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.
* Switch to PhraseMatcher.find_matches
* Switch to local cdef functions for span filtering
* Switch special case reload threshold to variable
Refer to variable instead of hard-coded threshold
* Move more of special case retokenize to cdef nogil
Move as much of the special case retokenization to nogil as possible.
* Rewrap sort as stdsort for OS X
* Rewrap stdsort with specific types
* Switch to qsort
* Fix merge
* Improve cmp functions
* Fix realloc
* Fix realloc again
* Initialize span struct while retokenizing
* Temporarily skip retokenizing
* Revert "Move more of special case retokenize to cdef nogil"
This reverts commit 0b7e52c797.
* Revert "Switch to qsort"
This reverts commit a98d71a942.
* Fix specials check while caching
* Modify URL test with emoticons
The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.
* Refactor _apply_special_cases()
* Use cdef ints for span info used in multiple spots
* Modify _filter_special_spans() to prefer earlier
Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.
* Replace MatchStruct with Entity
Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.
* Replace Entity with more general SpanC
* Replace MatchStruct with SpanC
* Add error in debug-data if no dev docs are available (see #4575)
* Update azure-pipelines.yml
* Revert "Update azure-pipelines.yml"
This reverts commit ed1060cf59.
* Use latest wasabi
* Reorganise install_requires
* add dframcy to universe.json (#4580)
* Update universe.json [ci skip]
* Fix multiprocessing for as_tuples=True (#4582)
* Fix conllu script (#4579)
* force extensions to avoid clash between example scripts
* fix arg order and default file encoding
* add example config for conllu script
* newline
* move extension definitions to main function
* few more encodings fixes
* Add load_from_docbin example [ci skip]
TODO: upload the file somewhere
* Update README.md
* Add warnings about 3.8 (resolves#4593) [ci skip]
* Fixed typo: Added space between "recognize" and "various" (#4600)
* Fix DocBin.merge() example (#4599)
* Replace function registries with catalogue (#4584)
* Replace functions registries with catalogue
* Update __init__.py
* Fix test
* Revert unrelated flag [ci skip]
* Bugfix/dep matcher issue 4590 (#4601)
* add contributor agreement for prilopes
* add test for issue #4590
* fix on_match params for DependencyMacther (#4590)
* Minor updates to language example sentences (#4608)
* Add punctuation to Spanish example sentences
* Combine multilanguage examples for lang xx
* Add punctuation to nb examples
* Always realloc to a larger size
Avoid potential (unlikely) edge case and cymem error seen in #4604.
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* OrigAnnot class instead of gold.orig_annot list of zipped tuples
* from_orig to replace from_annot_tuples
* rename to RawAnnot
* some unit tests for GoldParse creation and internal format
* removing orig_annot and switching to lists instead of tuple
* rewriting tuples to use RawAnnot (+ debug statements, WIP)
* fix pop() changing the data
* small fixes
* pop-append fixes
* return RawAnnot for existing GoldParse to have uniform interface
* clean up imports
* fix merge_sents
* add unit test for 4402 with new structure (not working yet)
* introduce DocAnnot
* typo fixes
* add unit test for merge_sents
* rename from_orig to from_raw
* fixing unit tests
* fix nn parser
* read_annots to produce text, doc_annot pairs
* _make_golds fix
* rename golds_to_gold_annots
* small fixes
* fix encoding
* have golds_to_gold_annots use DocAnnot
* missed a spot
* merge_sents as function in DocAnnot
* allow specifying only part of the token-level annotations
* refactor with Example class + underlying dicts
* pipeline components to work with Example objects (wip)
* input checking
* fix yielding
* fix calls to update
* small fixes
* fix scorer unit test with new format
* fix kwargs order
* fixes for ud and conllu scripts
* fix reading data for conllu script
* add in proper errors (not fixed numbering yet to avoid merge conflicts)
* fixing few more small bugs
* fix EL script
* Add arch for MishWindowEncoder
* Support mish in tok2vec and conv window >=2
* Pass new tok2vec settings from parser
* Syntax error
* Fix tok2vec setting
* Fix registration of MishWindowEncoder
* Fix receptive field setting
* Fix mish arch
* Pass more options from parser
* Support more tok2vec options in pretrain
* Require thinc 7.3
* Add docs [ci skip]
* Require thinc 7.3.0.dev0 to run CI
* Run black
* Fix typo
* Update Thinc version
Co-authored-by: Ines Montani <ines@ines.io>
* Flag to ignore examples with mismatched raw/gold text
After #4525, we're seeing some alignment failures on our OntoNotes data. I think we actually have fixes for most of these cases.
In general it's better to fix the data, but it seems good to allow the GoldCorpus class to just skip cases where the raw text doesn't
match up to the gold words. I think previously we were silently ignoring these cases.
* Try to fix test on Python 2.7
* Error for ill-formed input to iob_to_biluo()
Check for empty label in iob_to_biluo(), which can result from
ill-formed input.
* Check for empty NER label in debug-data
* fix overflow error on windows
* more documentation & logging fixes
* md fix
* 3 different limit parameters to play with execution time
* bug fixes directory locations
* small fixes
* exclude dev test articles from prior probabilities stats
* small fixes
* filtering wikidata entities, removing numeric and meta items
* adding aliases from wikidata also to the KB
* fix adding WD aliases
* adding also new aliases to previously added entities
* fixing comma's
* small doc fixes
* adding subclassof filtering
* append alias functionality in KB
* prevent appending the same entity-alias pair
* fix for appending WD aliases
* remove date filter
* remove unnecessary import
* small corrections and reformatting
* remove WD aliases for now (too slow)
* removing numeric entities from training and evaluation
* small fixes
* shortcut during prediction if there is only one candidate
* add counts and fscore logging, remove FP NER from evaluation
* fix entity_linker.predict to take docs instead of single sentences
* remove enumeration sentences from the WP dataset
* entity_linker.update to process full doc instead of single sentence
* spelling corrections and dump locations in readme
* NLP IO fix
* reading KB is unnecessary at the end of the pipeline
* small logging fix
* remove empty files
* Only import pkg_resources where it's needed
Apparently it's really slow
* Use importlib_metadata for entry points
* Revert "Only import pkg_resources where it's needed"
This reverts commit 5ed8c03afa.
* Revert "Revert "Only import pkg_resources where it's needed""
This reverts commit 8b30b57957.
* Revert "Use importlib_metadata for entry points"
This reverts commit 9f071f5c40.
* Revert "Revert "Use importlib_metadata for entry points""
This reverts commit 02e12a17ec.
* Skip test that weirdly hangs
* Fix hanging test by using global
* Allow vectors name to be specified in init-model
* Document --vectors-name argument to init-model
* Update website/docs/api/cli.md
Co-Authored-By: Ines Montani <ines@ines.io>
* Add doc.cats to spacy.gold at the paragraph level
Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.
* `spacy.gold.docs_to_json()` writes `docs.cats`
* `GoldCorpus` reads in cats in each `GoldParse`
* Update instances of gold_tuples to handle cats
Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.
* Add textcat to train CLI
* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
* For binary exclusive classes with provided label: F1 for label
* For 2+ exclusive classes: F1 macro average
* For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI
* Fix handling of unset arguments and config params
Fix handling of unset arguments and model confiug parameters in Scorer
initialization.
* Temporarily add sklearn requirement
* Remove sklearn version number
* Improve Scorer handling of models without textcats
* Fixing Scorer handling of models without textcats
* Update Scorer output for python 2.7
* Modify inf in Scorer for python 2.7
* Auto-format
Also make small adjustments to make auto-formatting with black easier and produce nicer results
* Move error message to Errors
* Update documentation
* Add cats to annotation JSON format [ci skip]
* Fix tpl flag and docs [ci skip]
* Switch to internal roc_auc_score
Switch to internal `roc_auc_score()` adapted from scikit-learn.
* Add AUCROCScore tests and improve errors/warnings
* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors
* Make reduced roc_auc_score functions private
Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.
* Check that data corresponds with multilabel flag
Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.
* Add textcat score to early stopping check
* Add more checks to debug-data for textcat
* Add example training data for textcat
* Add more checks to textcat train CLI
* Check configuration when extending base model
* Fix typos
* Update textcat example data
* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.
Co-authored-by: Ines Montani <ines@ines.io>
* Updates/bugfixes for NER/IOB converters
* Converter formats `ner` and `iob` use autodetect to choose a converter if
possible
* `iob2json` is reverted to handle sentence-per-line data like
`word1|pos1|ent1 word2|pos2|ent2`
* Fix bug in `merge_sentences()` so the second sentence in each batch isn't
skipped
* `conll_ner2json` is made more general so it can handle more formats with
whitespace-separated columns
* Supports all formats where the first column is the token and the final
column is the IOB tag; if present, the second column is the POS tag
* As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
separates documents
* Add option for segmenting sentences (new flag `-s`)
* Parser-based sentence segmentation with a provided model, otherwise with
sentencizer (new option `-b` to specify model)
* Can group sentences into documents with `n_sents` as long as sentence
segmentation is available
* Only applies automatic segmentation when there are no existing delimiters
in the data
* Provide info about settings applied during conversion with warnings and
suggestions if settings conflict or might not be not optimal.
* Add tests for common formats
* Add '(default)' back to docs for -c auto
* Add document count back to output
* Revert changes to converter output message
* Use explicit tabs in convert CLI test data
* Adjust/add messages for n_sents=1 default
* Add sample NER data to training examples
* Update README
* Add links in docs to example NER data
* Define msg within converters
* Prevent subtok label if not learning tokens
The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.
* Make merge_subtokens a parser post-process if learn_subtokens
* Fix train script
* Add test for 3830: subtok problem
* Fix handlign of non-subtok in parser training
* Extending debug-data with dependency checks, etc.
* Modify debug-data to load with GoldCorpus to iterate over .json/.jsonl
files within directories
* Add GoldCorpus iterator train_docs_without_preprocessing to load
original train docs without shuffling and projectivizing
* Report number of misaligned tokens
* Add more dependency checks and messages
* Update spacy/cli/debug_data.py
Co-Authored-By: Ines Montani <ines@ines.io>
* Fixed conflict
* Move counts to _compile_gold()
* Move all dependency nonproj/sent/head/cycle counting to
_compile_gold()
* Unclobber previous merges
* Update variable names
* Update more variable names, fix misspelling
* Don't clobber loading error messages
* Only warn about misaligned tokens if present
* Update pretrain to prevent unintended overwriting of weight files for #3859
* Add '--epoch-start' to pretrain docs
* Add mising pretrain arguments to bash example
* Update doc tag for v2.1.5
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`
* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.
* Add missing quotation marks
* Add check for empty input file to CLI pretrain
* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key
* Skip empty values for correct pretrain keys and log a counter as warning
* Add tests for CLI pretrain core function make_docs.
* Add a short hint for the `tokens` key to the CLI pretrain docs
* Add success message to CLI pretrain
* Update model loading to fix the tests
* Skip empty values and do not create docs out of it
<!--- Provide a general summary of your changes in the title. -->
When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
To test...
Save this file to `sample_sents.jsonl`
```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```
Then run `--save-every 2` when pretraining.
```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```
And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.
At the end the training, you should see these files (`ls here/`):
```bash
config.json model2.bin model5.bin model8.bin
log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin model3.bin model6.bin model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin model4.bin model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
This is a new feature to `spacy pretrain`.
🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).**
```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
run(args.root)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
process(base, filename, db)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
func(*args)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
File "setup.py", line 276, in <module>
setup_package()
File "setup.py", line 209, in setup_package
generate_cython(root, "spacy")
File "setup.py", line 132, in generate_cython
raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```
Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Add early stopping
* Add return_score option to evaluate
* Fix missing str to path conversion
* Fix import + old python compatibility
* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
Add and document CLI options for batch size, max doc length, min doc length for `spacy pretrain`.
Also improve CLI output.
Closes#3216
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* merging conllu/conll and conllubio scripts
* tabs to spaces
* removing conllubio2json from converters/__init__.py
* Move not-really-CLI tests to misc
* Add converter test using no-ud data
* Fix test I broke
* removing include_biluo parameter
* fixing read_conllx
* remove include_biluo from convert.py
* Add custom MatchPatternError
* Improve validators and add validation option to Matcher
* Adjust formatting
* Never validate in Matcher within PhraseMatcher
If we do decide to make validate default to True, the PhraseMatcher's Matcher shouldn't ever validate. Here, we create the patterns automatically anyways (and it's currently unclear whether the validation has performance impacts at a very large scale).
* running UD eval
* printing timing of tokenizer: tokens per second
* timing of default English model
* structured output and parameterization to compare different runs
* additional flag to allow evaluation without parsing info
* printing verbose log of errors for manual inspection
* printing over- and undersegmented cases (and combo's)
* add under and oversegmented numbers to Score and structured output
* print high-freq over/under segmented words and word shapes
* printing examples as part of the structured output
* print the results to file
* batch run of different models and treebanks per language
* cleaning up code
* commandline script to process all languages in spaCy & UD
* heuristic to remove blinded corpora and option to run one single best per language
* pathlib instead of os for file paths
* Try to implement cosine loss
This one seems to be correct? Still unsure, but it performs okay
* Try to implement the von Mises-Fisher loss
This one's definitely not right yet.
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
Support semi-supervised learning in spacy train
One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing.
Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning.
Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective.
Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage:
python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze
Implement rehearsal methods for pipeline components
The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows:
Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model.
Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details.
Implement rehearsal updates for tagger
Implement rehearsal updates for text categoriz
* Add todo
* Auto-format
* Update wasabi pin
* Format training results with wasabi
* Remove loading animation from model saving
Currently behaves weirdly
* Inline messages
* Remove unnecessary path2str
Already taken care of by printer
* Inline messages in CLI
* Remove unused function
* Move loading indicator into loading function
* Check for invalid whitespace entities