* Revert changes to priority of `token_match` so that it has priority
over all other tokenizer patterns
* Add lookahead and potentially slow lookbehind back to the default URL
pattern
* Expand character classes in URL pattern to improve matching around
lookaheads and lookbehinds related to #4882
* Revert changes to Hungarian tokenizer
* Revert (xfail) several URL tests to their status before #4374
* Update `tokenizer.explain()` and docs accordingly
* add lemma option to displacy 'dep' visualiser
* more compact list comprehension
* add option to doc
* fix test and add lemmas to util.get_doc
* fix capital
* remove lemma from get_doc
* cleanup
* Fix ent_ids and labels properties when id attribute used in patterns
* use set for labels
* sort end_ids for comparison in entity_ruler tests
* fixing entity_ruler ent_ids test
* add to set
* Run make_doc optimistically if using phrase matcher patterns.
* remove unused coveragerc I was testing with
* format
* Refactor EntityRuler.add_patterns to use nlp.pipe for phrase patterns. Improves speed substantially.
* Removing old add_patterns function
* Fixing spacing
* Make sure token_patterns loaded as well, before generator was being emptied in from_disk
* Update token.md
documentation is confusing: A '?' is a right punct, but '¿' is a left punct
* Update token.md
add quotations around parentheses in `is_left_punct` and `is_right_punct` for clarrification, ensuring the question mark that follows is not percieved as an example of left and right punctuation
* Move quotes into code block [ci skip]
* Expose tokenizer rules as a property
Expose the tokenizer rules property in the same way as the other core
properties. (The cache resetting is overkill, but consistent with
`from_bytes` for now.)
Add tests and update Tokenizer API docs.
* Update Hungarian punctuation to remove empty string
Update Hungarian punctuation definitions so that `_units` does not match
an empty string.
* Use _load_special_tokenization consistently
Use `_load_special_tokenization()` and have it to handle `None` checks.
* Fix precedence of `token_match` vs. special cases
Remove `token_match` check from `_split_affixes()` so that special cases
have precedence over `token_match`. `token_match` is checked only before
infixes are split.
* Add `make_debug_doc()` to the Tokenizer
Add `make_debug_doc()` to the Tokenizer as a working implementation of
the pseudo-code in the docs.
Add a test (marked as slow) that checks that `nlp.tokenizer()` and
`nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens
for all languages that have `examples.sentences` that can be imported.
* Update tokenization usage docs
Update pseudo-code and algorithm description to correspond to
`nlp.tokenizer.make_debug_doc()` with example debugging usage.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Revert "Update Hungarian punctuation to remove empty string"
This reverts commit f0a577f7a5.
* Rework `make_debug_doc()` as `explain()`
Rework `make_debug_doc()` as `explain()`, which returns a list of
`(pattern_string, token_string)` tuples rather than a non-standard
`Doc`. Update docs and tests accordingly, leaving the visualization for
future work.
* Handle cases with bad tokenizer patterns
Detect when tokenizer patterns match empty prefixes and suffixes so that
`explain()` does not hang on bad patterns.
* Remove unused displacy image
* Add tokenizer.explain() to usage docs
Update pseudo-code and algorithm description to correspond to current
tokenizer behavior.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Generalize handling of tokenizer special cases
Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.
Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:
* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes
Existing tests/settings that couldn't be preserved as before:
* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again
When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.
* Remove accidentally added test case
* Really remove accidentally added test
* Reload special cases when necessary
Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.
* Update error code number
* Fix offset and whitespace in Matcher special cases
* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case
* Improve cache flushing in tokenizer
* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21
* Remove reinitialized PreshMaps on cache flush
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Use special Matcher only for cases with affixes
* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
* Additionally include specials cache checks while splitting on infixes
* Since the special Matcher needs consistent affix-only tokenization
for the special cases themselves, introduce the argument
`with_special_cases` in order to do tokenization with or without
specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes
* Replace PhraseMatcher with Aho-Corasick
Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.
The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.
Fixes#4308.
* Restore support for pickling
* Fix internal keyword add/remove for numpy arrays
* Add test for #4248, clean up test
* Improve efficiency of special cases handling
* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
* Process merge/splits in one pass without repeated token shifting
* Merge in place if no splits
* Update error message number
* Remove UD script modifications
Only used for timing/testing, should be a separate PR
* Remove final traces of UD script modifications
* Update UD bin scripts
* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)
* Add missing loop for match ID set in search loop
* Remove cruft in matching loop for partial matches
There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.
* Replace dict trie with MapStruct trie
* Fix how match ID hash is stored/added
* Update fix for match ID vocab
* Switch from map_get_unless_missing to map_get
* Switch from numpy array to Token.get_struct_attr
Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.
Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)
* Restructure imports to export find_matches
* Implement full remove()
Remove unnecessary trie paths and free unused maps.
Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.
* Switch to PhraseMatcher.find_matches
* Switch to local cdef functions for span filtering
* Switch special case reload threshold to variable
Refer to variable instead of hard-coded threshold
* Move more of special case retokenize to cdef nogil
Move as much of the special case retokenization to nogil as possible.
* Rewrap sort as stdsort for OS X
* Rewrap stdsort with specific types
* Switch to qsort
* Fix merge
* Improve cmp functions
* Fix realloc
* Fix realloc again
* Initialize span struct while retokenizing
* Temporarily skip retokenizing
* Revert "Move more of special case retokenize to cdef nogil"
This reverts commit 0b7e52c797.
* Revert "Switch to qsort"
This reverts commit a98d71a942.
* Fix specials check while caching
* Modify URL test with emoticons
The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.
* Refactor _apply_special_cases()
* Use cdef ints for span info used in multiple spots
* Modify _filter_special_spans() to prefer earlier
Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.
* Replace MatchStruct with Entity
Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.
* Replace Entity with more general SpanC
* Replace MatchStruct with SpanC
* Add error in debug-data if no dev docs are available (see #4575)
* Update azure-pipelines.yml
* Revert "Update azure-pipelines.yml"
This reverts commit ed1060cf59.
* Use latest wasabi
* Reorganise install_requires
* add dframcy to universe.json (#4580)
* Update universe.json [ci skip]
* Fix multiprocessing for as_tuples=True (#4582)
* Fix conllu script (#4579)
* force extensions to avoid clash between example scripts
* fix arg order and default file encoding
* add example config for conllu script
* newline
* move extension definitions to main function
* few more encodings fixes
* Add load_from_docbin example [ci skip]
TODO: upload the file somewhere
* Update README.md
* Add warnings about 3.8 (resolves#4593) [ci skip]
* Fixed typo: Added space between "recognize" and "various" (#4600)
* Fix DocBin.merge() example (#4599)
* Replace function registries with catalogue (#4584)
* Replace functions registries with catalogue
* Update __init__.py
* Fix test
* Revert unrelated flag [ci skip]
* Bugfix/dep matcher issue 4590 (#4601)
* add contributor agreement for prilopes
* add test for issue #4590
* fix on_match params for DependencyMacther (#4590)
* Minor updates to language example sentences (#4608)
* Add punctuation to Spanish example sentences
* Combine multilanguage examples for lang xx
* Add punctuation to nb examples
* Always realloc to a larger size
Avoid potential (unlikely) edge case and cymem error seen in #4604.
* Add error in debug-data if no dev docs are available (see #4575)
* Update debug-data for GoldCorpus / Example
* Ignore None label in misaligned NER data
* Add arch for MishWindowEncoder
* Support mish in tok2vec and conv window >=2
* Pass new tok2vec settings from parser
* Syntax error
* Fix tok2vec setting
* Fix registration of MishWindowEncoder
* Fix receptive field setting
* Fix mish arch
* Pass more options from parser
* Support more tok2vec options in pretrain
* Require thinc 7.3
* Add docs [ci skip]
* Require thinc 7.3.0.dev0 to run CI
* Run black
* Fix typo
* Update Thinc version
Co-authored-by: Ines Montani <ines@ines.io>
* Implement new API for {Phrase}Matcher.add (backwards-compatible)
* Update docs
* Also update DependencyMatcher.add
* Update internals
* Rewrite tests to use new API
* Add basic check for common mistake
Raise error with suggestion if user likely passed in a pattern instead of a list of patterns
* Fix typo [ci skip]
* Update English tag_map
Update English tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
* Update German tag_map
Update German tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
* Add missing Tiger dependencies to glossary
* Add quotes to definition of TO
* Update POS/TAG tables in docs
Update POS/TAG tables for English and German docs using current
information generated from the tag_maps and GLOSSARY.
* Update warning that -PRON- is specific to English
* Revert docs to default JSON output with convert
* Revert "Revert docs to default JSON output with convert"
This reverts commit 6b78c048f1.
* Support train dict format as JSONL
* Add (overly simple) check for dict vs. tuple to read JSONL lines as
either train dicts or train tuples
* Extend JSON/JSONL roundtrip conversion tests using `docs_to_json()`
and `GoldCorpus.train_tuples`
* Revert docs to default JSON output with convert
* Move test
* Allow default in Lookups.get_table
* Start with blank tables in Lookups.from_bytes
* Refactor lemmatizer to hold instance of Lookups
* Get lookups table within the lemmatization methods to make sure it references the correct table (even if the table was replaced or modified, e.g. when loading a model from disk)
* Deprecate other arguments on Lemmatizer.__init__ and expect Lookups for consistency
* Remove old and unsupported Lemmatizer.load classmethod
* Refactor language-specific lemmatizers to inherit as much as possible from base class and override only what they need
* Update tests and docs
* Fix more tests
* Fix lemmatizer
* Upgrade pytest to try and fix weird CI errors
* Try pytest 4.6.5
* Allow vectors name to be specified in init-model
* Document --vectors-name argument to init-model
* Update website/docs/api/cli.md
Co-Authored-By: Ines Montani <ines@ines.io>
* Add doc.cats to spacy.gold at the paragraph level
Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.
* `spacy.gold.docs_to_json()` writes `docs.cats`
* `GoldCorpus` reads in cats in each `GoldParse`
* Update instances of gold_tuples to handle cats
Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.
* Add textcat to train CLI
* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
* For binary exclusive classes with provided label: F1 for label
* For 2+ exclusive classes: F1 macro average
* For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI
* Fix handling of unset arguments and config params
Fix handling of unset arguments and model confiug parameters in Scorer
initialization.
* Temporarily add sklearn requirement
* Remove sklearn version number
* Improve Scorer handling of models without textcats
* Fixing Scorer handling of models without textcats
* Update Scorer output for python 2.7
* Modify inf in Scorer for python 2.7
* Auto-format
Also make small adjustments to make auto-formatting with black easier and produce nicer results
* Move error message to Errors
* Update documentation
* Add cats to annotation JSON format [ci skip]
* Fix tpl flag and docs [ci skip]
* Switch to internal roc_auc_score
Switch to internal `roc_auc_score()` adapted from scikit-learn.
* Add AUCROCScore tests and improve errors/warnings
* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors
* Make reduced roc_auc_score functions private
Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.
* Check that data corresponds with multilabel flag
Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.
* Add textcat score to early stopping check
* Add more checks to debug-data for textcat
* Add example training data for textcat
* Add more checks to textcat train CLI
* Check configuration when extending base model
* Fix typos
* Update textcat example data
* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.
Co-authored-by: Ines Montani <ines@ines.io>
* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* typo fix
* add candidate API to kb documentation
* update API sidebar with EntityLinker and KnowledgeBase
* remove EL from 101 docs
* remove entity linker from 101 pipelines / rephrase
* custom el model instead of existing model
* set version to 2.2 for EL functionality
* update documentation for 2 CLI scripts
* Updates/bugfixes for NER/IOB converters
* Converter formats `ner` and `iob` use autodetect to choose a converter if
possible
* `iob2json` is reverted to handle sentence-per-line data like
`word1|pos1|ent1 word2|pos2|ent2`
* Fix bug in `merge_sentences()` so the second sentence in each batch isn't
skipped
* `conll_ner2json` is made more general so it can handle more formats with
whitespace-separated columns
* Supports all formats where the first column is the token and the final
column is the IOB tag; if present, the second column is the POS tag
* As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
separates documents
* Add option for segmenting sentences (new flag `-s`)
* Parser-based sentence segmentation with a provided model, otherwise with
sentencizer (new option `-b` to specify model)
* Can group sentences into documents with `n_sents` as long as sentence
segmentation is available
* Only applies automatic segmentation when there are no existing delimiters
in the data
* Provide info about settings applied during conversion with warnings and
suggestions if settings conflict or might not be not optimal.
* Add tests for common formats
* Add '(default)' back to docs for -c auto
* Add document count back to output
* Revert changes to converter output message
* Use explicit tabs in convert CLI test data
* Adjust/add messages for n_sents=1 default
* Add sample NER data to training examples
* Update README
* Add links in docs to example NER data
* Define msg within converters
* Fix typo in rule-based matching docs
* Improve token pattern checking without validation
Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.
Addresses #4070 (also related: #4063, #4100).
* Check whether top-level attributes in patterns and attr for PhraseMatcher are
in token pattern schema
* Check whether attribute value types are supported in general (as opposed to
per attribute with full validation)
* Report various internal error types (OverflowError, AttributeError, KeyError)
as ValueError with standard error messages
* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
LEMMA, and DEP
* Add error messages with relevant details on how to use validate=True or nlp()
instead of nlp.make_doc()
* Support attr=TEXT for PhraseMatcher
* Add NORM to schema
* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler
* Remove unnecessary .keys()
* Rephrase error messages
* Add another type check to Matcher
Add another type check to Matcher for more understandable error messages
in some rare cases.
* Support phrase_matcher_attr=TEXT for EntityRuler
* Don't use spacy.errors in examples and bin scripts
* Fix error code
* Auto-format
Also try get Azure pipelines to finally start a build :(
* Update errors.py
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* add `words`
* update name of entity list to `ner`
I think it might be a bit more consistent to have `ner` named `entities`
or `ents` (and `ents` is actually set somewhere to `None`, which is a
bit confusing), but it looks like renaming it would be a non-trivial
decision.
* Update pretrain to prevent unintended overwriting of weight files for #3859
* Add '--epoch-start' to pretrain docs
* Add mising pretrain arguments to bash example
* Update doc tag for v2.1.5
* Perserve flags in EntityRuler
The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized. This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.
* add signed contributor agreement
* flake8 cleanup
mostly blank line issues.
* mark test from the issue as needing a model
The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.
* Adds `phrase_matcher_attr` to allow args to PhraseMatcher
This is an added arg to pass to the `PhraseMatcher`. For example,
this allows creation of a case insensitive phrase matcher when the
`EntityRuler` is created. References explosion/spaCy#3822
* remove unneeded model loading
The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)
* updated docstring for new argument
* updated docs to reflect new argument to the EntityRuler constructor
* change tempdir handling to be compatible with python 2.7
* return conflicted code to entityruler
Some stuff got cut out because of merge conflicts, this
returns that code for the phrase_matcher_attr.
* fixed typo in the code added back after conflicts
* flake8 compliance
When I deconflicted the branch there were some flake8 issues
introduced. This resolves the spacing problems.
* test changes: attempts to fix flaky test in python3.5
These tests seem to be alittle flaky in 3.5 so I changed the check to avoid
the comparisons that seem to be fail sometimes.
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`
* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.
* Add missing quotation marks
* Changed learning rate by its param name.
I've been searching for a while how the parameter learning rate was named, with `beta1` and `beta2` its easy as they are marked as code, but learning rate wasn't. I think writing the actual parameter name would be helpful.
* Signing SCA
* Update tokenizer.md for construction example
Self contained example. You should really say what nlp is so that the example will work as is
* Update CONTRIBUTOR_AGREEMENT.md
* Restore contributor agreement
* Adjust construction examples
* Add check for empty input file to CLI pretrain
* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key
* Skip empty values for correct pretrain keys and log a counter as warning
* Add tests for CLI pretrain core function make_docs.
* Add a short hint for the `tokens` key to the CLI pretrain docs
* Add success message to CLI pretrain
* Update model loading to fix the tests
* Skip empty values and do not create docs out of it
<!--- Provide a general summary of your changes in the title. -->
When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
To test...
Save this file to `sample_sents.jsonl`
```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```
Then run `--save-every 2` when pretraining.
```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```
And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.
At the end the training, you should see these files (`ls here/`):
```bash
config.json model2.bin model5.bin model8.bin
log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin model3.bin model6.bin model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin model4.bin model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
This is a new feature to `spacy pretrain`.
🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).**
```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
run(args.root)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
process(base, filename, db)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
func(*args)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
File "setup.py", line 276, in <module>
setup_package()
File "setup.py", line 209, in setup_package
generate_cython(root, "spacy")
File "setup.py", line 132, in generate_cython
raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```
Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* fix(util): fix decaying function output
* fix(util): better test and adhere to code standards
* fix(util): correct variable name, pytestify test, update website text
* Fix code for bag-of-words feature extraction
The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).
* Support 'bow' architecture for TextCategorizer
This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.
* Fix size limits in train_textcat example
* Explain architectures better in docs
Add and document CLI options for batch size, max doc length, min doc length for `spacy pretrain`.
Also improve CLI output.
Closes#3216
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Add component_cfg kwarg to begin_training
* Document component_cfg arg to begin_training
* Update docs and auto-format
* Support component_cfg across Language
* Format
* Update docs and docstrings [ci skip]
* Fix begin_training
* Make serialization methods consistent
exclude keyword argument instead of random named keyword arguments and deprecation handling
* Update docs and add section on serialization fields
* Use default return instead of else
* Add Doc.is_nered to indicate if entities have been set
* Add properties in Doc.to_json if they were set, not if they're available
This way, if a processed Doc exports "pos": None, it means that the tag was explicitly unset. If it exports "ents": [], it means that entity annotations are available but that this document doesn't contain any entities. Before, this would have been unclear and problematic for training.
<!--- Provide a general summary of your changes in the title. -->
## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs
### Types of change
enhancement, docs
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Improve handling of missing NER tags
GoldParse can accept missing NER tags, if entities is provided
in BILUO format (rather than as spans). Missing tags can be provided
as None values.
Fix bug that occurred when first tag was a None value. Closes#2603.
* Document specification of missing NER tags.
<!--- Provide a general summary of your changes in the title. -->
## Description
This PR adds the abilility to override custom extension attributes during merging. This will only work for attributes that are writable, i.e. attributes registered with a default value like `default=False` or attribute that have both a getter *and* a setter implemented.
```python
Token.set_extension('is_musician', default=False)
doc = nlp("I like David Bowie.")
with doc.retokenize() as retokenizer:
attrs = {"LEMMA": "David Bowie", "_": {"is_musician": True}}
retokenizer.merge(doc[2:4], attrs=attrs)
assert doc[2].text == "David Bowie"
assert doc[2].lemma_ == "David Bowie"
assert doc[2]._.is_musician
```
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* splitting up latin unicode interval
* removing hyphen as infix for French
* adding failing test for issue 1235
* test for issue #3002 which now works
* partial fix for issue #2070
* keep the hyphen as infix for French (as it was)
* restore french expressions with hyphen as infix (as it was)
* added succeeding unit test for Issue #2656
* Fix issue #2822 with custom Italian exception
* Fix issue #2926 by allowing numbers right before infix /
* splitting up latin unicode interval
* removing hyphen as infix for French
* adding failing test for issue 1235
* test for issue #3002 which now works
* partial fix for issue #2070
* keep the hyphen as infix for French (as it was)
* restore french expressions with hyphen as infix (as it was)
* added succeeding unit test for Issue #2656
* Fix issue #2822 with custom Italian exception
* Fix issue #2926 by allowing numbers right before infix /
* remove duplicate
* remove xfail for Issue #2179 fixed by Matt
* adjust documentation and remove reference to regex lib
<!--- Provide a general summary of your changes in the title. -->
## Description
The new website is implemented using [Gatsby](https://www.gatsbyjs.org) with [Remark](https://github.com/remarkjs/remark) and [MDX](https://mdxjs.com/). This allows authoring content in **straightforward Markdown** without the usual limitations. Standard elements can be overwritten with powerful [React](http://reactjs.org/) components and wherever Markdown syntax isn't enough, JSX components can be used. Hopefully, this update will also make it much easier to contribute to the docs. Once this PR is merged, I'll implement auto-deployment via [Netlify](https://netlify.com) on a specific branch (to avoid building the website on every PR). There's a bunch of other cool stuff that the new setup will allow us to do – including writing front-end tests, service workers, offline support, implementing a search and so on.
This PR also includes various new docs pages and content.
Resolves#3270. Resolves#3222. Resolves#2947. Resolves#2837.
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
Kinda sucks because we normally use British spelling, but it just looks
weird and confusing otherwise... same with tokenizer and all other
library internals. So this is sort of the "official policy" for now.
This is a great tutorial, but I think it is weirdly explained in the current form. The largest part of the code is about implementing the actual sentiment analysis model, not about counting entities. (which is not even present in the `deep_learning_keras.py` script in `examples`)
Include conda and virtualenv info for pip, add instructions for
downloading models manually and add details and fab commands to
"Compile from source" section.