spaCy/spacy/_ml.py

1088 lines
36 KiB
Python
Raw Normal View History

2017-10-27 15:39:30 +03:00
# coding: utf8
from __future__ import unicode_literals
import numpy
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
2017-10-03 21:07:17 +03:00
from thinc.i2v import HashEmbed, StaticVectors
from thinc.t2t import ExtractWindow, ParametricAttention
from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool
2017-10-03 21:07:17 +03:00
from thinc.misc import Residual
from thinc.misc import LayerNorm as LN
from thinc.misc import FeatureExtracter
2017-05-06 21:38:12 +03:00
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.api import with_getitem, flatten_add_lengths
2017-10-27 15:39:30 +03:00
from thinc.api import uniqued, wrap, noop
from thinc.api import with_square_sequences
2017-10-03 21:07:17 +03:00
from thinc.linear.linear import LinearModel
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array, to_categorical
2017-11-06 16:25:37 +03:00
from thinc.neural.optimizers import Adam
2017-10-03 21:07:17 +03:00
2019-10-17 18:58:00 +03:00
from thinc.t2t import prepare_self_attention, MultiHeadedAttention
2017-05-08 12:36:37 +03:00
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
import thinc.extra.load_nlp
2017-10-27 15:39:30 +03:00
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
2019-07-11 15:46:29 +03:00
from .errors import Errors, user_warning, Warnings
2017-08-18 22:55:23 +03:00
from . import util
2017-05-04 14:31:40 +03:00
try:
import torch.nn
2018-09-14 01:54:34 +03:00
from thinc.extra.wrappers import PyTorchWrapperRNN
2018-11-30 19:43:08 +03:00
except ImportError:
torch = None
2017-10-03 21:29:58 +03:00
VECTORS_KEY = "spacy_pretrained_vectors"
2017-05-08 12:36:37 +03:00
2017-10-27 15:39:30 +03:00
2017-10-31 04:00:26 +03:00
def cosine(vec1, vec2):
2017-10-31 13:40:46 +03:00
xp = get_array_module(vec1)
norm1 = xp.linalg.norm(vec1)
norm2 = xp.linalg.norm(vec2)
if norm1 == 0.0 or norm2 == 0.0:
2017-10-31 13:40:46 +03:00
return 0
else:
return vec1.dot(vec2) / (norm1 * norm2)
2017-10-31 04:00:26 +03:00
def create_default_optimizer(ops, **cfg):
learn_rate = util.env_opt("learn_rate", 0.001)
Revert changes to optimizer default hyper-params (WIP) (#3415) While developing v2.1, I ran a bunch of hyper-parameter search experiments to find settings that performed well for spaCy's NER and parser. I ended up changing the default Adam settings from beta1=0.9, beta2=0.999, eps=1e-8 to beta1=0.8, beta2=0.8, eps=1e-5. This was giving a small improvement in accuracy (like, 0.4%). Months later, I run the models with Prodigy, which uses beam-search decoding even when the model has been trained with a greedy objective. The new models performed terribly...So, wtf? After a couple of days debugging, I figured out that the new optimizer settings was causing the model to converge to solutions where the top-scoring class often had a score of like, -80. The variance on the weights had gone up enormously. I guess I needed to update the L2 regularisation as well? Anyway. Let's just revert the change --- if the optimizer is finding such extreme solutions, that seems bad, and not nearly worth the small improvement in accuracy. Currently training a slate of models, to verify the accuracy change is minimal. Once the training is complete, we can merge this. <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-16 23:39:02 +03:00
beta1 = util.env_opt("optimizer_B1", 0.9)
beta2 = util.env_opt("optimizer_B2", 0.999)
eps = util.env_opt("optimizer_eps", 1e-8)
L2 = util.env_opt("L2_penalty", 1e-6)
Revert changes to optimizer default hyper-params (WIP) (#3415) While developing v2.1, I ran a bunch of hyper-parameter search experiments to find settings that performed well for spaCy's NER and parser. I ended up changing the default Adam settings from beta1=0.9, beta2=0.999, eps=1e-8 to beta1=0.8, beta2=0.8, eps=1e-5. This was giving a small improvement in accuracy (like, 0.4%). Months later, I run the models with Prodigy, which uses beam-search decoding even when the model has been trained with a greedy objective. The new models performed terribly...So, wtf? After a couple of days debugging, I figured out that the new optimizer settings was causing the model to converge to solutions where the top-scoring class often had a score of like, -80. The variance on the weights had gone up enormously. I guess I needed to update the L2 regularisation as well? Anyway. Let's just revert the change --- if the optimizer is finding such extreme solutions, that seems bad, and not nearly worth the small improvement in accuracy. Currently training a slate of models, to verify the accuracy change is minimal. Once the training is complete, we can merge this. <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-03-16 23:39:02 +03:00
max_grad_norm = util.env_opt("grad_norm_clip", 1.0)
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps)
optimizer.max_grad_norm = max_grad_norm
2017-11-06 16:25:37 +03:00
optimizer.device = ops.device
return optimizer
2017-07-22 21:03:40 +03:00
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.0):
2017-07-22 21:03:40 +03:00
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
2017-10-27 15:39:30 +03:00
2017-07-22 21:03:40 +03:00
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
2017-10-27 15:39:30 +03:00
2017-07-22 21:03:40 +03:00
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
def _zero_init(model):
def _zero_init_impl(self, *args, **kwargs):
2017-07-22 21:03:40 +03:00
self.W.fill(0)
model.on_init_hooks.append(_zero_init_impl)
2017-07-22 21:03:40 +03:00
if model.W is not None:
model.W.fill(0.0)
2017-07-22 21:03:40 +03:00
return model
2017-08-18 22:55:23 +03:00
2019-03-09 20:50:08 +03:00
def with_cpu(ops, model):
2019-03-09 20:51:17 +03:00
"""Wrap a model that should run on CPU, transferring inputs and outputs
as necessary."""
2019-03-09 20:50:08 +03:00
model.to_cpu()
2019-03-10 21:22:59 +03:00
2019-04-01 13:11:27 +03:00
def with_cpu_forward(inputs, drop=0.0):
2019-03-09 20:50:08 +03:00
cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop)
gpu_outputs = _to_device(ops, cpu_outputs)
def with_cpu_backprop(d_outputs, sgd=None):
cpu_d_outputs = _to_cpu(d_outputs)
return backprop(cpu_d_outputs, sgd=sgd)
return gpu_outputs, with_cpu_backprop
return wrap(with_cpu_forward, model)
def _to_cpu(X):
if isinstance(X, numpy.ndarray):
return X
elif isinstance(X, tuple):
return tuple([_to_cpu(x) for x in X])
elif isinstance(X, list):
return [_to_cpu(x) for x in X]
2019-04-01 13:11:27 +03:00
elif hasattr(X, "get"):
2019-03-09 20:50:08 +03:00
return X.get()
else:
return X
def _to_device(ops, X):
if isinstance(X, tuple):
return tuple([_to_device(ops, x) for x in X])
elif isinstance(X, list):
return [_to_device(ops, x) for x in X]
else:
return ops.asarray(X)
class extract_ngrams(Model):
def __init__(self, ngram_size, attr=LOWER):
Model.__init__(self)
self.ngram_size = ngram_size
self.attr = attr
def begin_update(self, docs, drop=0.0):
batch_keys = []
batch_vals = []
for doc in docs:
unigrams = doc.to_array([self.attr])
ngrams = [unigrams]
for n in range(2, self.ngram_size + 1):
ngrams.append(self.ops.ngrams(n, unigrams))
keys = self.ops.xp.concatenate(ngrams)
keys, vals = self.ops.xp.unique(keys, return_counts=True)
batch_keys.append(keys)
batch_vals.append(vals)
# The dtype here matches what thinc is expecting -- which differs per
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
2019-04-01 13:11:27 +03:00
lengths = self.ops.asarray(
[arr.shape[0] for arr in batch_keys], dtype=numpy.int_
)
batch_keys = self.ops.xp.concatenate(batch_keys)
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
return (batch_keys, batch_vals, lengths), None
2017-07-22 21:03:40 +03:00
@describe.on_data(
_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)
)
2017-05-08 12:36:37 +03:00
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
nP=Dimension("Maxout pieces"),
W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)),
pad=Synapses(
"Pad",
2017-10-28 19:45:14 +03:00
lambda obj: (1, obj.nF, obj.nO, obj.nP),
lambda M, ops: ops.normal_init(M, 1.0),
),
2017-05-08 12:36:37 +03:00
d_W=Gradient("W"),
2017-10-28 19:45:14 +03:00
d_pad=Gradient("pad"),
d_b=Gradient("b"),
)
2017-05-08 12:36:37 +03:00
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
2017-05-08 12:36:37 +03:00
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
2017-05-08 12:36:37 +03:00
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.0):
Yf = self.ops.gemm(
X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True
)
2017-10-28 19:45:14 +03:00
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
Yf = self._add_padding(Yf)
2017-10-19 14:44:49 +03:00
2017-05-08 12:36:37 +03:00
def backward(dY_ids, sgd=None):
dY, ids = dY_ids
2017-10-28 19:45:14 +03:00
dY, ids = self._backprop_padding(dY, ids)
2017-05-08 12:36:37 +03:00
Xf = X[ids]
2017-10-27 13:18:36 +03:00
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
2017-10-20 13:14:52 +03:00
2017-10-19 19:42:11 +03:00
self.d_b += dY.sum(axis=0)
dY = dY.reshape((dY.shape[0], self.nO * self.nP))
2017-10-27 13:18:36 +03:00
Wopfi = self.W.transpose((1, 2, 0, 3))
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI))
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi)
2017-10-28 19:45:14 +03:00
2017-10-27 13:18:36 +03:00
# Reuse the buffer
dWopfi = Wopfi
dWopfi.fill(0.0)
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
2017-10-27 13:18:36 +03:00
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
# (o, p, f, i) --> (f, o, p, i)
self.d_W += dWopfi.transpose((2, 0, 1, 3))
2017-05-08 12:36:37 +03:00
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
2017-10-27 13:18:36 +03:00
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
2017-05-08 12:36:37 +03:00
return Yf, backward
2017-10-28 19:45:14 +03:00
def _add_padding(self, Yf):
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
2017-10-31 04:33:34 +03:00
return Yf_padded
2017-10-28 19:45:14 +03:00
def _backprop_padding(self, dY, ids):
2017-10-31 04:33:34 +03:00
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
mask = ids < 0.0
2017-11-03 03:54:34 +03:00
mask = mask.sum(axis=1)
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
self.d_pad += d_pad.sum(axis=0)
2017-10-28 19:45:14 +03:00
return dY, ids
2017-05-08 12:36:37 +03:00
@staticmethod
def init_weights(model):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
if (model.W ** 2).sum() != 0.0:
return
2017-10-31 04:33:34 +03:00
ops = model.ops
xp = ops.xp
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
ids = ops.allocate((5000, model.nF), dtype="f")
2017-10-31 04:33:34 +03:00
ids += xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.allocate((5000, model.nI), dtype="f")
tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
2018-05-02 04:35:59 +03:00
# nS ids. nW tokvecs. Exclude the padding array.
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f")
# need nS vectors
hiddens = hiddens.reshape(
(hiddens.shape[0] * model.nF, model.nO * model.nP)
)
2018-05-02 04:35:59 +03:00
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
vectors += model.b
2018-05-02 04:35:59 +03:00
vectors = model.ops.asarray(vectors)
if model.nP >= 2:
return model.ops.maxout(vectors)[0]
else:
return vectors * (vectors >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
t_i = 0
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
2017-10-31 04:33:34 +03:00
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
2017-10-31 04:33:34 +03:00
model.W /= model.ops.xp.sqrt(var)
elif abs(mean) >= tol_mean:
model.b -= mean
else:
break
2017-05-08 15:24:43 +03:00
2017-09-22 17:38:36 +03:00
def link_vectors_to_models(vocab):
vectors = vocab.vectors
if vectors.name is None:
vectors.name = VECTORS_KEY
if vectors.data.size != 0:
user_warning(Warnings.W020.format(shape=vectors.data.shape))
2017-09-22 17:38:36 +03:00
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = 0
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
2019-07-11 13:32:59 +03:00
key = (ops.device, vectors.name)
if key in thinc.extra.load_nlp.VECTORS:
if thinc.extra.load_nlp.VECTORS[key].shape != data.shape:
2019-07-11 15:46:29 +03:00
# This is a hack to avoid the problem in #3853. Maybe we should
# print a warning as well?
old_name = vectors.name
new_name = vectors.name + "_%d" % data.shape[0]
user_warning(Warnings.W019.format(old=old_name, new=new_name))
vectors.name = new_name
key = (ops.device, vectors.name)
2019-07-11 13:32:59 +03:00
thinc.extra.load_nlp.VECTORS[key] = data
2017-08-18 22:55:23 +03:00
2017-10-27 15:39:30 +03:00
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
if depth == 0:
2018-09-14 01:54:34 +03:00
return layerize(noop())
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
return with_square_sequences(PyTorchWrapperRNN(model))
2019-10-17 18:58:00 +03:00
def Tok2Vec_chars_cnn(width, embed_size, **kwargs):
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
conv_depth = kwargs.get("conv_depth", 4)
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
):
embed = (
CharacterEmbed(nM=64, nC=8)
>> with_flatten(LN(Maxout(width, 64*8, pieces=cnn_maxout_pieces))))
tok2vec = embed >> with_flatten(CNN(width, conv_depth, 3))
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
def Tok2Vec_chars_selfattention(width, embed_size, **kwargs):
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
sa_depth = kwargs.get("self_attn_depth", 4)
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
):
embed = (
CharacterEmbed(nM=64, nC=8)
>> with_flatten(LN(Maxout(width, 64*8, pieces=cnn_maxout_pieces))))
tok2vec = (
embed
>> PositionEncode(10000, width)
2019-10-18 18:23:37 +03:00
>> SelfAttention(width, 1, 4) ** sa_depth
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
def Tok2Vec_chars_bilstm(width, embed_size, **kwargs):
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
depth = kwargs.get("bilstm_depth", 2)
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
):
embed = (
CharacterEmbed(nM=64, nC=8)
>> with_flatten(LN(Maxout(width, 64*8, pieces=cnn_maxout_pieces))))
tok2vec = (
embed
>> Residual(PyTorchBiLSTM(width, width, depth))
>> with_flatten(LN(nO=width))
2019-10-17 18:58:00 +03:00
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
2019-10-18 18:23:37 +03:00
2019-10-17 18:58:00 +03:00
def CNN(width, depth, pieces, nW=1):
2019-10-17 18:58:00 +03:00
layer = chain(
ExtractWindow(nW=nW),
LN(Maxout(width, width * (nW*2+1), pieces=pieces)))
2019-10-17 18:58:00 +03:00
return clone(Residual(layer), depth)
def SelfAttention(width, depth, pieces):
layer = chain(
2019-10-18 18:23:37 +03:00
prepare_self_attention(Affine(width * 3, width), nM=width, nH=pieces, window=None),
2019-10-17 18:58:00 +03:00
MultiHeadedAttention(),
with_flatten(Maxout(width, width)))
2019-10-18 18:23:37 +03:00
return clone(Residual(chain(layer, with_flatten(LN(nO=width)))), depth)
2019-10-17 18:58:00 +03:00
def PositionEncode(L, D):
positions = NumpyOps().position_encode(L, D)
positions = Model.ops.asarray(positions)
def position_encode_forward(Xs, drop=0.):
output = []
for x in Xs:
output.append(x + positions[:x.shape[0]])
def position_encode_backward(dYs, sgd=None):
return dYs
return output, position_encode_backward
return layerize(position_encode_forward)
def Tok2Vec(width, embed_size, **kwargs):
pretrained_vectors = kwargs.get("pretrained_vectors", None)
2018-12-09 01:27:29 +03:00
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
subword_features = kwargs.get("subword_features", True)
2019-10-18 18:23:37 +03:00
char_embed = util.env_opt("char_embed", kwargs.get("char_embed", False))
conv_depth = kwargs.get("conv_depth", 4)
2019-10-18 18:23:37 +03:00
bilstm_depth = util.env_opt("bilstm_depth", kwargs.get("bilstm_depth", 0))
self_attn_depth = util.env_opt("self_attn_depth", kwargs.get("self_attn_depth", 0))
conv_window = util.env_opt("conv_window", kwargs.get("cnn_window", 1))
2019-10-18 18:23:37 +03:00
kwargs.setdefault("bilstm_depth", bilstm_depth)
kwargs.setdefault("self_attn_depth", self_attn_depth)
kwargs.setdefault("char_embed", char_embed)
kwargs.setdefault("conv_window", conv_window)
2019-10-17 18:58:00 +03:00
if char_embed and self_attn_depth:
return Tok2Vec_chars_selfattention(width, embed_size, **kwargs)
2019-10-18 18:23:37 +03:00
elif char_embed and bilstm_depth:
return Tok2Vec_chars_bilstm(width, embed_size, **kwargs)
2019-10-17 18:58:00 +03:00
elif char_embed and conv_depth:
return Tok2Vec_chars_cnn(width, embed_size, **kwargs)
2017-08-18 22:55:23 +03:00
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
):
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
if subword_features:
prefix = HashEmbed(
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
)
suffix = HashEmbed(
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
)
shape = HashEmbed(
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
)
else:
2018-08-27 03:12:39 +03:00
prefix, suffix, shape = (None, None, None)
if pretrained_vectors is not None:
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
2017-09-22 17:38:36 +03:00
2019-09-11 15:00:36 +03:00
if subword_features:
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> LN(Maxout(width, width * 5, pieces=3)),
column=cols.index(ORTH),
)
else:
embed = uniqued(
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
column=cols.index(ORTH),
)
elif subword_features:
2017-09-22 17:38:36 +03:00
embed = uniqued(
(norm | prefix | suffix | shape)
>> LN(Maxout(width, width * 4, pieces=3)),
2019-09-11 15:00:36 +03:00
column=cols.index(ORTH),
)
else:
embed = norm
2017-09-22 17:38:36 +03:00
2019-10-17 18:58:00 +03:00
tok2vec = (
FeatureExtracter(cols)
>> with_flatten(
embed
>> CNN(width, conv_depth, cnn_maxout_pieces, nW=conv_window),
pad=conv_depth * conv_window)
2019-10-17 18:58:00 +03:00
)
2019-09-11 15:00:36 +03:00
if bilstm_depth >= 1:
2019-10-18 18:23:37 +03:00
tok2vec = (
tok2vec
>> Residual(
PyTorchBiLSTM(width, width, 1)
>> LN(nO=width)
) ** bilstm_depth
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
2017-05-04 14:31:40 +03:00
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.0):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
2017-10-27 15:39:30 +03:00
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
2017-10-27 15:39:30 +03:00
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.0):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
2017-05-04 14:31:40 +03:00
def get_col(idx):
if idx < 0:
raise IndexError(Errors.E066.format(value=idx))
2017-10-27 15:39:30 +03:00
def forward(X, drop=0.0):
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
2017-10-27 15:39:30 +03:00
2017-05-06 21:38:12 +03:00
def backward(y, sgd=None):
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
dX = ops.allocate(X.shape)
2017-05-06 21:38:12 +03:00
dX[:, idx] += y
return dX
2017-05-04 14:31:40 +03:00
2017-10-27 15:39:30 +03:00
return output, backward
2017-05-04 14:31:40 +03:00
2017-10-27 15:39:30 +03:00
return layerize(forward)
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
def doc2feats(cols=None):
2017-08-18 22:55:23 +03:00
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
2017-10-27 15:39:30 +03:00
def forward(docs, drop=0.0):
2017-05-18 12:22:20 +03:00
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
2017-10-27 15:39:30 +03:00
2017-05-06 17:47:15 +03:00
model = layerize(forward)
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-13 00:09:15 +03:00
model.cols = cols
2017-05-06 17:47:15 +03:00
return model
2017-05-06 21:38:12 +03:00
def print_shape(prefix):
def forward(X, drop=0.0):
2017-05-06 21:38:12 +03:00
return X, lambda dX, **kwargs: dX
2017-05-06 21:38:12 +03:00
return layerize(forward)
2017-05-07 04:57:26 +03:00
2017-05-06 21:38:12 +03:00
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.0):
2017-05-06 21:38:12 +03:00
tokens, attrs, vectors = tokens_attrs_vectors
2017-10-27 15:39:30 +03:00
2017-05-06 21:38:12 +03:00
def backward(d_output, sgd=None):
return (tokens, d_output)
2017-09-04 17:26:38 +03:00
2017-10-27 15:39:30 +03:00
return vectors, backward
2017-07-20 01:17:17 +03:00
@layerize
def logistic(X, drop=0.0):
2017-07-20 01:17:17 +03:00
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10.0, X)
X = xp.maximum(X, -10.0, X)
Y = 1.0 / (1.0 + xp.exp(-X))
2017-10-27 15:39:30 +03:00
2017-07-20 01:17:17 +03:00
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1 - Y))
2017-07-20 01:17:17 +03:00
return dX
2017-10-27 15:39:30 +03:00
2017-07-20 01:17:17 +03:00
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
2017-07-20 01:17:17 +03:00
model.on_data_hooks.append(_zero_init_impl)
return model
2017-10-27 15:39:30 +03:00
2017-08-18 22:55:23 +03:00
def getitem(i):
def getitem_fwd(X, drop=0.0):
2017-08-18 22:55:23 +03:00
return X[i], None
2017-08-18 22:55:23 +03:00
return layerize(getitem_fwd)
2017-10-27 13:16:41 +03:00
@describe.attributes(
2019-03-08 15:28:53 +03:00
W=Synapses("Weights matrix", lambda obj: (obj.nO, obj.nI), lambda W, ops: None)
)
class MultiSoftmax(Affine):
2019-03-08 15:28:53 +03:00
"""Neural network layer that predicts several multi-class attributes at once.
For instance, we might predict one class with 6 variables, and another with 5.
We predict the 11 neurons required for this, and then softmax them such
that columns 0-6 make a probability distribution and coumns 6-11 make another.
2019-03-08 15:28:53 +03:00
"""
name = "multisoftmax"
def __init__(self, out_sizes, nI=None, **kwargs):
Model.__init__(self, **kwargs)
self.out_sizes = out_sizes
self.nO = sum(out_sizes)
self.nI = nI
def predict(self, input__BI):
logits = self.ops.affine(self.W, self.b, input__BI)
outputs = []
i = 0
for out_size in self.out_sizes:
outputs.append(self.ops.softmax(logits[:, i : i+out_size]))
i += out_size
return self.ops.xp.hstack(outputs)
2019-03-08 15:28:53 +03:00
def begin_update(self, input__BI, drop=0.0):
output__BO = self.predict(input__BI)
2019-03-08 15:28:53 +03:00
def finish_update(grad__BO, sgd=None):
self.d_W += self.ops.gemm(grad__BO, input__BI, trans1=True)
self.d_b += grad__BO.sum(axis=0)
grad__BI = self.ops.gemm(grad__BO, self.W)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return grad__BI
2019-03-08 15:28:53 +03:00
return output__BO, finish_update
def build_tagger_model(nr_class, **cfg):
embed_size = util.env_opt("embed_size", 2000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
else:
token_vector_width = util.env_opt("token_vector_width", 96)
pretrained_vectors = cfg.get("pretrained_vectors")
subword_features = cfg.get("subword_features", True)
2019-10-17 18:58:00 +03:00
conv_depth = cfg.get("conv_depth", util.env_opt("conv_depth", 4))
with Model.define_operators({">>": chain, "+": add}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
2019-03-08 15:28:53 +03:00
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
subword_features=subword_features,
pretrained_vectors=pretrained_vectors,
2019-10-17 18:58:00 +03:00
conv_depth=conv_depth
2019-03-08 15:28:53 +03:00
)
softmax = with_flatten(Softmax(nr_class, token_vector_width))
model = tok2vec >> softmax
model.nI = None
model.tok2vec = tok2vec
model.softmax = softmax
return model
2019-03-08 15:28:53 +03:00
def build_morphologizer_model(class_nums, **cfg):
2019-03-08 15:28:53 +03:00
embed_size = util.env_opt("embed_size", 7000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
2017-09-21 21:07:26 +03:00
else:
2019-03-08 15:28:53 +03:00
token_vector_width = util.env_opt("token_vector_width", 128)
pretrained_vectors = cfg.get("pretrained_vectors")
2019-10-17 18:58:00 +03:00
char_embed = cfg.get("char_embed", False)
2019-03-10 01:54:59 +03:00
with Model.define_operators({">>": chain, "+": add, "**": clone}):
2019-03-08 15:28:53 +03:00
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
2019-03-08 15:28:53 +03:00
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
char_embed=char_embed,
2019-03-08 15:28:53 +03:00
pretrained_vectors=pretrained_vectors,
)
2019-09-11 15:00:36 +03:00
softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width))
2018-09-25 23:12:32 +03:00
softmax.out_sizes = class_nums
2019-03-08 15:28:53 +03:00
model = tok2vec >> softmax
2017-08-18 22:55:23 +03:00
model.nI = None
model.tok2vec = tok2vec
2017-11-03 13:22:01 +03:00
model.softmax = softmax
2017-08-18 22:55:23 +03:00
return model
@layerize
def SpacyVectors(docs, drop=0.0):
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype="i")
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
2017-07-20 01:17:17 +03:00
def build_text_classifier(nr_class, width=64, **cfg):
depth = cfg.get("depth", 2)
nr_vector = cfg.get("nr_vector", 5000)
pretrained_dims = cfg.get("pretrained_dims", 0)
with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}):
if cfg.get("low_data") and pretrained_dims:
2017-09-02 15:56:30 +03:00
model = (
SpacyVectors
>> flatten_add_lengths
2017-10-27 15:39:30 +03:00
>> with_getitem(0, Affine(width, pretrained_dims))
2017-09-02 15:56:30 +03:00
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
2017-07-20 01:17:17 +03:00
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width // 2, nr_vector, column=2)
suffix = HashEmbed(width // 2, nr_vector, column=3)
shape = HashEmbed(width // 2, nr_vector, column=4)
trained_vectors = FeatureExtracter(
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
) >> with_flatten(
uniqued(
(lower | prefix | suffix | shape)
>> LN(Maxout(width, width + (width // 2) * 3)),
column=0,
2017-07-20 01:17:17 +03:00
)
)
if pretrained_dims:
static_vectors = SpacyVectors >> with_flatten(
Affine(width, pretrained_dims)
)
# TODO Make concatenate support lists
vectors = concatenate_lists(trained_vectors, static_vectors)
vectors_width = width * 2
else:
vectors = trained_vectors
vectors_width = width
static_vectors = None
tok2vec = vectors >> with_flatten(
LN(Maxout(width, vectors_width))
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
pad=depth,
2018-11-03 01:51:37 +03:00
)
cnn_model = (
2018-11-03 01:51:37 +03:00
tok2vec
2017-09-02 15:56:30 +03:00
>> flatten_add_lengths
>> ParametricAttention(width)
2017-07-25 19:57:59 +03:00
>> Pooling(sum_pool)
2017-09-02 15:56:30 +03:00
>> Residual(zero_init(Maxout(width, width)))
2017-07-25 19:57:59 +03:00
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = build_bow_text_classifier(
2019-04-01 13:11:27 +03:00
nr_class, ngram_size=cfg.get("ngram_size", 1), exclusive_classes=False
2019-03-09 20:50:08 +03:00
)
2019-03-08 15:28:53 +03:00
if cfg.get("exclusive_classes"):
output_layer = Softmax(nr_class, nr_class * 2)
else:
output_layer = (
2019-03-08 15:28:53 +03:00
zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic
)
2019-03-08 15:28:53 +03:00
model = (linear_model | cnn_model) >> output_layer
model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
2017-07-20 01:17:17 +03:00
model.lsuv = False
return model
2017-10-27 15:39:30 +03:00
2019-04-01 13:11:27 +03:00
def build_bow_text_classifier(
nr_class, ngram_size=1, exclusive_classes=False, no_output_layer=False, **cfg
):
with Model.define_operators({">>": chain}):
2019-04-01 13:11:27 +03:00
model = with_cpu(
Model.ops, extract_ngrams(ngram_size, attr=ORTH) >> LinearModel(nr_class)
)
if not no_output_layer:
model = model >> (cpu_softmax if exclusive_classes else logistic)
model.nO = nr_class
return model
@layerize
2019-04-01 13:11:27 +03:00
def cpu_softmax(X, drop=0.0):
ops = NumpyOps()
def cpu_softmax_backward(dY, sgd=None):
return dY
return ops.softmax(X), cpu_softmax_backward
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
"""
Build a simple CNN text classifier, given a token-to-vector model as inputs.
If exclusive_classes=True, a softmax non-linearity is applied, so that the
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
is applied instead, so that outputs are in the range [0, 1].
"""
with Model.define_operators({">>": chain}):
if exclusive_classes:
output_layer = Softmax(nr_class, tok2vec.nO*3)
else:
2019-03-08 15:28:53 +03:00
output_layer = (
zero_init(Affine(nr_class, tok2vec.nO*3, drop_factor=0.0)) >> logistic
2019-03-08 15:28:53 +03:00
)
model = tok2vec >> flatten_add_lengths >> Pooling(sum_pool, mean_pool, max_pool) >> output_layer
model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
return model
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
if "entity_width" not in cfg:
2019-07-15 12:42:50 +03:00
raise ValueError(Errors.E144.format(param="entity_width"))
conv_depth = cfg.get("conv_depth", 2)
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
2019-07-15 13:04:45 +03:00
pretrained_vectors = cfg.get("pretrained_vectors", None)
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
context_width = cfg.get("entity_width")
with Model.define_operators({">>": chain, "**": clone}):
# context encoder
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
tok2vec = Tok2Vec(
2019-08-18 16:09:16 +03:00
width=hidden_width,
embed_size=embed_width,
pretrained_vectors=pretrained_vectors,
cnn_maxout_pieces=cnn_maxout_pieces,
subword_features=True,
conv_depth=conv_depth,
bilstm_depth=0,
2019-07-11 13:02:25 +03:00
)
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
model = (
tok2vec
2019-07-11 13:02:25 +03:00
>> flatten_add_lengths
>> Pooling(mean_pool)
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
>> zero_init(Affine(context_width, hidden_width, drop_factor=0.0))
2019-07-11 13:02:25 +03:00
)
model.tok2vec = tok2vec
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
model.nO = context_width
return model
2019-07-11 13:02:25 +03:00
@layerize
def flatten(seqs, drop=0.0):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
2017-10-27 15:39:30 +03:00
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
2017-10-27 15:39:30 +03:00
X = ops.flatten(seqs, pad=0)
return X, finish_update
2017-10-27 15:39:30 +03:00
def concatenate_lists(*layers, **kwargs): # pragma: no cover
"""Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
2017-10-27 15:39:30 +03:00
"""
if not layers:
return noop()
drop_factor = kwargs.get("drop_factor", 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
2017-10-27 15:39:30 +03:00
def concatenate_lists_fwd(Xs, drop=0.0):
if drop is not None:
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
2017-10-27 15:39:30 +03:00
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
2017-10-27 15:39:30 +03:00
return ys, concatenate_lists_bwd
2017-10-27 15:39:30 +03:00
model = wrap(concatenate_lists_fwd, concat)
return model
💫 Better support for semi-supervised learning (#3035) The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting Support semi-supervised learning in spacy train One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing. Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning. Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective. Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage: python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze Implement rehearsal methods for pipeline components The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows: Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model. Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details. Implement rehearsal updates for tagger Implement rehearsal updates for text categoriz
2018-12-10 18:25:33 +03:00
def masked_language_model(vocab, model, mask_prob=0.15):
"""Convert a model into a BERT-style masked language model"""
random_words = _RandomWords(vocab)
def mlm_forward(docs, drop=0.0):
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
output, backprop = model.begin_update(docs, drop=drop)
def mlm_backward(d_output, sgd=None):
d_output *= 1 - mask
return backprop(d_output, sgd=sgd)
return output, mlm_backward
return wrap(mlm_forward, model)
class _RandomWords(object):
def __init__(self, vocab):
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
self.words = self.words[:10000]
self.probs = self.probs[:10000]
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
self.probs /= self.probs.sum()
self._cache = []
def next(self):
if not self._cache:
self._cache.extend(
numpy.random.choice(len(self.words), 10000, p=self.probs)
)
index = self._cache.pop()
return self.words[index]
def _apply_mask(docs, random_words, mask_prob=0.15):
# This needs to be here to avoid circular imports
from .tokens.doc import Doc
N = sum(len(doc) for doc in docs)
mask = numpy.random.uniform(0.0, 1.0, (N,))
mask = mask >= mask_prob
i = 0
masked_docs = []
for doc in docs:
words = []
for token in doc:
if not mask[i]:
word = _replace_word(token.text, random_words)
else:
word = token.text
words.append(word)
i += 1
spaces = [bool(w.whitespace_) for w in doc]
# NB: If you change this implementation to instead modify
# the docs in place, take care that the IDs reflect the original
# words. Currently we use the original docs to make the vectors
# for the target, so we don't lose the original tokens. But if
# you modified the docs in place here, you would.
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
return mask, masked_docs
def _replace_word(word, random_words, mask="[MASK]"):
roll = numpy.random.random()
if roll < 0.8:
return mask
elif roll < 0.9:
return random_words.next()
else:
return word
def _uniform_init(lo, hi):
def wrapped(W, ops):
copy_array(W, ops.xp.random.uniform(lo, hi, W.shape))
2019-09-11 15:00:36 +03:00
return wrapped
@describe.attributes(
nM=Dimension("Vector dimensions"),
nC=Dimension("Number of characters per word"),
2019-09-11 15:00:36 +03:00
vectors=Synapses(
"Embed matrix", lambda obj: (obj.nC, obj.nV, obj.nM), _uniform_init(-0.1, 0.1)
),
d_vectors=Gradient("vectors"),
)
class CharacterEmbed(Model):
def __init__(self, nM=None, nC=None, **kwargs):
Model.__init__(self, **kwargs)
self.nM = nM
self.nC = nC
@property
def nO(self):
return self.nM * self.nC
2019-09-11 15:00:36 +03:00
@property
def nV(self):
return 256
2019-09-11 15:00:36 +03:00
def begin_update(self, docs, drop=0.0):
if not docs:
return []
output = []
weights = self.vectors
# This assists in indexing; it's like looping over this dimension.
# Still consider this weird witch craft...But thanks to Mark Neumann
# for the tip.
nCv = self.ops.xp.arange(self.nC)
2019-10-18 18:23:19 +03:00
stream = util.get_cuda_stream(non_blocking=True)
ids = []
for doc in docs:
2019-10-18 18:23:19 +03:00
doc_ids = doc.to_utf8_array(nr_char=self.nC)
if stream is None:
ids.append(doc_ids)
else:
ids.append(util.get_async(stream, doc_ids))
if stream is not None:
stream.synchronize()
for doc, doc_ids in zip(docs, ids):
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
# incantation do I chant to get
# output[i, j, k] == data[j, ids[i, j], k]?
doc_vectors[:, nCv] = weights[nCv, doc_ids[:, nCv]]
output.append(doc_vectors.reshape((len(doc), self.nO)))
ids.append(doc_ids)
def backprop_character_embed(d_vectors, sgd=None):
gradient = self.d_vectors
for doc_ids, d_doc_vectors in zip(ids, d_vectors):
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), self.nC, self.nM))
gradient[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return None
2019-09-11 15:00:36 +03:00
return output, backprop_character_embed
def get_characters_loss(ops, docs, prediction, nr_char=10):
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
target_ids = target_ids.reshape((-1,))
target = ops.asarray(to_categorical(target_ids, nb_classes=256), dtype="f")
target = target.reshape((-1, 256*nr_char))
diff = prediction - target
loss = (diff**2).sum()
d_target = diff / float(prediction.shape[0])
return loss, d_target
def get_cossim_loss(yh, y, ignore_zeros=False):
xp = get_array_module(yh)
# Find the zero vectors
if ignore_zeros:
zero_indices = xp.abs(y).sum(axis=1) == 0
# Add a small constant to avoid 0 vectors
yh = yh + 1e-8
y = y + 1e-8
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
mul_norms = norm_yh * norm_y
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
losses = xp.abs(cosine - 1)
if ignore_zeros:
# If the target was a zero vector, don't count it in the loss.
d_yh[zero_indices] = 0
losses[zero_indices] = 0
loss = losses.sum()
2019-09-11 15:00:36 +03:00
return loss, -d_yh