* Support data augmentation in Corpus
* Note initial docs for data augmentation
* Add augmenter to quickstart
* Fix flake8
* Format
* Fix test
* Update spacy/tests/training/test_training.py
* Improve data augmentation arguments
* Update templates
* Move randomization out into caller
* Refactor
* Update spacy/training/augment.py
* Update spacy/tests/training/test_training.py
* Fix augment
* Fix test
* Add MORPH handling to Matcher
* Add `MORPH` to `Matcher` schema
* Rename `_SetMemberPredicate` to `_SetPredicate`
* Add `ISSUBSET` and `ISSUPERSET` operators to `_SetPredicate`
* Add special handling for normalization and conversion of morph
values into sets
* For other attrs, `ISSUBSET` acts like `IN` and `ISSUPERSET` only
matches for 0 or 1 values
* Update test
* Rename to IS_SUBSET and IS_SUPERSET
* NEL: read sentences and ents from reference
* fiddling with sent_start annotations
* add KB serialization test
* KB write additional file with strings.json
* score_links function to calculate NEL P/R/F
* formatting
* documentation
* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
* `Doc.has_annotation(attr)` returns `True` for partial annotation
* `Doc.has_annotation(attr, require_complete=True)` returns `True` for
complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Add official support for the `DependencyMatcher`. Redesign the pattern
specification. Fix and extend operator implementations. Update API docs
and add usage docs.
Patterns
--------
Refactor pattern structure to:
```
{
"LEFT_ID": str,
"REL_OP": str,
"RIGHT_ID": str,
"RIGHT_ATTRS": dict,
}
```
The first node contains only `RIGHT_ID` and `RIGHT_ATTRS` and all
subsequent nodes contain all four keys.
New operators
-------------
Because of the way patterns are constructed from left to right, it's
helpful to have `follows` operators along with `precedes` operators. Add
operators for simple precedes / follows alongside immediate precedes /
follows.
* `.*`: precedes
* `;`: immediately follows
* `;*`: follows
Operator fixes
--------------
* `<` and `<<` do not include the node itself
* Fix reversed order for all operators involving linear precedence (`.`,
all sibling operators)
* Linear precedence operators do not match nodes outside the same parse
Additional fixes
----------------
* Use v3 Matcher API
* Support `get` and `remove`
* Support pickling
* rename to spacy-transformers.TransformerListener
* add some more tok2vec tests
* use select_pipes
* fix docs - annotation setter was not changed in the end
* Add AttributeRuler.score
Add scoring for TAG / POS / MORPH / LEMMA if these are present in the
assigned token attributes.
Add default score weights (that don't really make a lot of sense) so
that the scores are in the default config in some form.
* Update docs
- Accept any case for label names in ents and colors option, even if actual predicted label uses different casing
- Don't text-transform: uppercase visually, if it's important to users that the label is represented as-is in the UI
* candidate generator as separate part of EL config
* update comment
* ent instead of str as input for candidate generation
* Span instead of str: correct type indication
* fix types
* unit test to create new candidate generator
* fix replace_pipe argument passing
* move error message, general cleanup
* add vocab back to KB constructor
* provide KB as callable from Vocab arg
* rename to kb_loader, fix KB serialization as part of the EL pipe
* fix typo
* reformatting
* cleanup
* fix comment
* fix wrongly duplicated code from merge conflict
* rename dump to to_disk
* from_disk instead of load_bulk
* update test after recent removal of set_morphology in tagger
* remove old doc
* Add Lemmatizer and simplify related components
* Add `Lemmatizer` pipe with `lookup` and `rule` modes using the
`Lookups` tables.
* Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma)
* Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer,
or morph rules)
* Remove lemmatizer from `Vocab`
* Adjust many many tests
Differences:
* No default lookup lemmas
* No special treatment of TAG in `from_array` and similar required
* Easier to modify labels in a `Tagger`
* No extra strings added from morphology / tag map
* Fix test
* Initial fix for Lemmatizer config/serialization
* Adjust init test to be more generic
* Adjust init test to force empty Lookups
* Add simple cache to rule-based lemmatizer
* Convert language-specific lemmatizers
Convert language-specific lemmatizers to component lemmatizers. Remove
previous lemmatizer class.
* Fix French and Polish lemmatizers
* Remove outdated UPOS conversions
* Update Russian lemmatizer init in tests
* Add minimal init/run tests for custom lemmatizers
* Add option to overwrite existing lemmas
* Update mode setting, lookup loading, and caching
* Make `mode` an immutable property
* Only enforce strict `load_lookups` for known supported modes
* Move caching into individual `_lemmatize` methods
* Implement strict when lang is not found in lookups
* Fix tables/lookups in make_lemmatizer
* Reallow provided lookups and allow for stricter checks
* Add lookups asset to all Lemmatizer pipe tests
* Rename lookups in lemmatizer init test
* Clean up merge
* Refactor lookup table loading
* Add helper from `load_lemmatizer_lookups` that loads required and
optional lookups tables based on settings provided by a config.
Additional slight refactor of lookups:
* Add `Lookups.set_table` to set a table from a provided `Table`
* Reorder class definitions to be able to specify type as `Table`
* Move registry assets into test methods
* Refactor lookups tables config
Use class methods within `Lemmatizer` to provide the config for
particular modes and to load the lookups from a config.
* Add pipe and score to lemmatizer
* Simplify Tagger.score
* Add missing import
* Clean up imports and auto-format
* Remove unused kwarg
* Tidy up and auto-format
* Update docstrings for Lemmatizer
Update docstrings for Lemmatizer.
Additionally modify `is_base_form` API to take `Token` instead of
individual features.
* Update docstrings
* Remove tag map values from Tagger.add_label
* Update API docs
* Fix relative link in Lemmatizer API docs
* Allow Doc.char_span to snap to token boundaries
Add a `mode` option to allow `Doc.char_span` to snap to token
boundaries. The `mode` options:
* `strict`: character offsets must match token boundaries (default, same as
before)
* `inside`: all tokens completely within the character span
* `outside`: all tokens at least partially covered by the character span
Add a new helper function `token_by_char` that returns the token
corresponding to a character position in the text. Update
`token_by_start` and `token_by_end` to use `token_by_char` for more
efficient searching.
* Remove unused import
* Rename mode to alignment_mode
Rename `mode` to `alignment_mode` with the options
`strict`/`contract`/`expand`. Any unrecognized modes are silently
converted to `strict`.
* Refactor the Scorer to improve flexibility
Refactor the `Scorer` to improve flexibility for arbitrary pipeline
components.
* Individual pipeline components provide their own `evaluate` methods
that score a list of `Example`s and return a dictionary of scores
* `Scorer` is initialized either:
* with a provided pipeline containing components to be scored
* with a default pipeline containing the built-in statistical
components (senter, tagger, morphologizer, parser, ner)
* `Scorer.score` evaluates a list of `Example`s and returns a dictionary
of scores referring to the scores provided by the components in the
pipeline
Significant differences:
* `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc`
and the new `morph_acc`, `pos_acc`, and `lemma_acc`
* Scoring is no longer cumulative: `Scorer.score` scores a list of
examples rather than a single example and does not retain any state
about previously scored examples
* PRF values in the returned scores are no longer multiplied by 100
* Add kwargs to Morphologizer.evaluate
* Create generalized scoring methods in Scorer
* Generalized static scoring methods are added to `Scorer`
* Methods require an attribute (either on Token or Doc) that is
used to key the returned scores
Naming differences:
* `uas`, `las`, and `las_per_type` in the scores dict are renamed to
`dep_uas`, `dep_las`, and `dep_las_per_type`
Scoring differences:
* `Doc.sents` is now scored as spans rather than on sentence-initial
token positions so that `Doc.sents` and `Doc.ents` can be scored with
the same method (this lowers scores since a single incorrect sentence
start results in two incorrect spans)
* Simplify / extend hasattr check for eval method
* Add hasattr check to tokenizer scoring
* Simplify to hasattr check for component scoring
* Reset Example alignment if docs are set
Reset the Example alignment if either doc is set in case the
tokenization has changed.
* Add PRF tokenization scoring for tokens as spans
Add PRF scores for tokens as character spans. The scores are:
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for (token.idx, token.idx + len(token))
* Add docstring to Scorer.score_tokenization
* Rename component.evaluate() to component.score()
* Update Scorer API docs
* Update scoring for positive_label in textcat
* Fix TextCategorizer.score kwargs
* Update Language.evaluate docs
* Update score names in default config
* Use cosine loss in Cloze multitask
* Fix char_embed for gpu
* Call resume_training for base model in train CLI
* Fix bilstm_depth default in pretrain command
* Implement character-based pretraining objective
* Use chars loss in ClozeMultitask
* Add method to decode predicted characters
* Fix number characters
* Rescale gradients for mlm
* Fix char embed+vectors in ml
* Fix pipes
* Fix pretrain args
* Move get_characters_loss
* Fix import
* Fix import
* Mention characters loss option in pretrain
* Remove broken 'self attention' option in pretrain
* Revert "Remove broken 'self attention' option in pretrain"
This reverts commit 56b820f6af.
* Document 'characters' objective of pretrain
* Add static method to Doc to allow merging of multiple docs.
* Add error description for the error that occurs if docs with different
vocabs (from different languages) are merged in Doc.from_docs().
* Add test for Doc.from_docs() implementation.
* Fix using numpy's concatenate in Doc.from_docs.
* Replace typing's type annotations in from_docs.
* Simply remove type annotations in from_docs.
* Add documentation for Doc.from_docs to api.
* Simplify from_docs, its test and the api doc for codebase consistency.
* Fix merging of Doc objects that end with whitespaces (Achieved by simply not setting the SPACY attribute on whitespace tokens). Remove two unnecessary imports of attributes.
* Add merging of user data from Doc objects in from_docs. Add user data test case to corresponding test. Add applicable warning messages.
* Fix incorrect setting of tokens idx by using concatenated spaces (again). Add test case to corresponding test.
* Add MORPH to attrs
* Update warnings calls
* Remove out-dated error from merge
* Rename space_delimiter to ensure_whitespace
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Add version number to DocBin
Add a version number to DocBin for future use.
* Add POS to all attributes in DocBin
* Add morph string to strings in DocBin
* Update DocBin API
* Add string for ENT_KB_ID in DocBin
Very minor fix in docs, specifically in this part:
```
matcher = PhraseMatcher(nlp.vocab)
> for doc in matcher.pipe(texts, batch_size=50):
> pass
```
`texts` suggests the input is an iterable of strings. I replaced it for `docs`.
Very minor fix in docs, specifically in this part:
```
matcher = PhraseMatcher(nlp.vocab)
> for doc in matcher.pipe(texts, batch_size=50):
> pass
```
`texts` suggests the input is an iterable of strings. I replaced it for `docs`.
* Update website models for v2.3.0
* Add docs for Chinese word segmentation
* Tighten up Chinese docs section
* Merge branch 'master' into docs/v2.3.0 [ci skip]
* Merge branch 'master' into docs/v2.3.0 [ci skip]
* Auto-format and update version
* Update matcher.md
* Update languages and sorting
* Typo in landing page
* Infobox about token_match behavior
* Add meta and basic docs for Japanese
* POS -> TAG in models table
* Add info about lookups for normalization
* Updates to API docs for v2.3
* Update adding norm exceptions for adding languages
* Add --omit-extra-lookups to CLI API docs
* Add initial draft of "What's New in v2.3"
* Add new in v2.3 tags to Chinese and Japanese sections
* Add tokenizer to migration section
* Add new in v2.3 flags to init-model
* Typo
* More what's new in v2.3
Co-authored-by: Ines Montani <ines@ines.io>
* verbose and tag_map options
* adding init_tok2vec option and only changing the tok2vec that is specified
* adding omit_extra_lookups and verifying textcat config
* wip
* pretrain bugfix
* add replace and resume options
* train_textcat fix
* raw text functionality
* improve UX when KeyError or when input data can't be parsed
* avoid unnecessary access to goldparse in TextCat pipe
* save performance information in nlp.meta
* add noise_level to config
* move nn_parser's defaults to config file
* multitask in config - doesn't work yet
* scorer offering both F and AUC options, need to be specified in config
* add textcat verification code from old train script
* small fixes to config files
* clean up
* set default config for ner/parser to allow create_pipe to work as before
* two more test fixes
* small fixes
* cleanup
* fix NER pickling + additional unit test
* create_pipe as before
* make disable_pipes deprecated in favour of the new toggle_pipes
* rewrite disable_pipes statements
* update documentation
* remove bin/wiki_entity_linking folder
* one more fix
* remove deprecated link to documentation
* few more doc fixes
* add note about name change to the docs
* restore original disable_pipes
* small fixes
* fix typo
* fix error number to W096
* rename to select_pipes
* also make changes to the documentation
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
To fix the slow tokenizer URL (#4374) and allow `token_match` to take
priority over prefixes and suffixes by default, introduce a new
tokenizer option for a token match pattern that's applied after prefixes
and suffixes but before infixes.
* `debug-data`: determine coverage of provided vectors
* `evaluate`: support `blank:lg` model to make it possible to just evaluate
tokenization
* `init-model`: add option to truncate vectors to N most frequent vectors
from word2vec file
* `train`:
* if training on GPU, only run evaluation/timing on CPU in the first
iteration
* if training is aborted, exit with a non-0 exit status
Reconstruction of the original PR #4697 by @MiniLau.
Removes unused `SENT_END` symbol and `IS_SENT_END` from `Matcher` schema
because the Matcher is only going to be able to support `IS_SENT_START`.
* add lemma option to displacy 'dep' visualiser
* more compact list comprehension
* add option to doc
* fix test and add lemmas to util.get_doc
* fix capital
* remove lemma from get_doc
* cleanup
* Update token.md
documentation is confusing: A '?' is a right punct, but '¿' is a left punct
* Update token.md
add quotations around parentheses in `is_left_punct` and `is_right_punct` for clarrification, ensuring the question mark that follows is not percieved as an example of left and right punctuation
* Move quotes into code block [ci skip]
* Expose tokenizer rules as a property
Expose the tokenizer rules property in the same way as the other core
properties. (The cache resetting is overkill, but consistent with
`from_bytes` for now.)
Add tests and update Tokenizer API docs.
* Update Hungarian punctuation to remove empty string
Update Hungarian punctuation definitions so that `_units` does not match
an empty string.
* Use _load_special_tokenization consistently
Use `_load_special_tokenization()` and have it to handle `None` checks.
* Fix precedence of `token_match` vs. special cases
Remove `token_match` check from `_split_affixes()` so that special cases
have precedence over `token_match`. `token_match` is checked only before
infixes are split.
* Add `make_debug_doc()` to the Tokenizer
Add `make_debug_doc()` to the Tokenizer as a working implementation of
the pseudo-code in the docs.
Add a test (marked as slow) that checks that `nlp.tokenizer()` and
`nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens
for all languages that have `examples.sentences` that can be imported.
* Update tokenization usage docs
Update pseudo-code and algorithm description to correspond to
`nlp.tokenizer.make_debug_doc()` with example debugging usage.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Revert "Update Hungarian punctuation to remove empty string"
This reverts commit f0a577f7a5.
* Rework `make_debug_doc()` as `explain()`
Rework `make_debug_doc()` as `explain()`, which returns a list of
`(pattern_string, token_string)` tuples rather than a non-standard
`Doc`. Update docs and tests accordingly, leaving the visualization for
future work.
* Handle cases with bad tokenizer patterns
Detect when tokenizer patterns match empty prefixes and suffixes so that
`explain()` does not hang on bad patterns.
* Remove unused displacy image
* Add tokenizer.explain() to usage docs
* Add arch for MishWindowEncoder
* Support mish in tok2vec and conv window >=2
* Pass new tok2vec settings from parser
* Syntax error
* Fix tok2vec setting
* Fix registration of MishWindowEncoder
* Fix receptive field setting
* Fix mish arch
* Pass more options from parser
* Support more tok2vec options in pretrain
* Require thinc 7.3
* Add docs [ci skip]
* Require thinc 7.3.0.dev0 to run CI
* Run black
* Fix typo
* Update Thinc version
Co-authored-by: Ines Montani <ines@ines.io>
* Implement new API for {Phrase}Matcher.add (backwards-compatible)
* Update docs
* Also update DependencyMatcher.add
* Update internals
* Rewrite tests to use new API
* Add basic check for common mistake
Raise error with suggestion if user likely passed in a pattern instead of a list of patterns
* Fix typo [ci skip]
* Update English tag_map
Update English tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
* Update German tag_map
Update German tag_map based on this conversion table:
https://universaldependencies.org/tagset-conversion/de-stts-uposf.html
* Add missing Tiger dependencies to glossary
* Add quotes to definition of TO
* Update POS/TAG tables in docs
Update POS/TAG tables for English and German docs using current
information generated from the tag_maps and GLOSSARY.
* Update warning that -PRON- is specific to English
* Revert docs to default JSON output with convert
* Revert "Revert docs to default JSON output with convert"
This reverts commit 6b78c048f1.
* Support train dict format as JSONL
* Add (overly simple) check for dict vs. tuple to read JSONL lines as
either train dicts or train tuples
* Extend JSON/JSONL roundtrip conversion tests using `docs_to_json()`
and `GoldCorpus.train_tuples`
* Revert docs to default JSON output with convert
* Move test
* Allow default in Lookups.get_table
* Start with blank tables in Lookups.from_bytes
* Refactor lemmatizer to hold instance of Lookups
* Get lookups table within the lemmatization methods to make sure it references the correct table (even if the table was replaced or modified, e.g. when loading a model from disk)
* Deprecate other arguments on Lemmatizer.__init__ and expect Lookups for consistency
* Remove old and unsupported Lemmatizer.load classmethod
* Refactor language-specific lemmatizers to inherit as much as possible from base class and override only what they need
* Update tests and docs
* Fix more tests
* Fix lemmatizer
* Upgrade pytest to try and fix weird CI errors
* Try pytest 4.6.5
* Allow vectors name to be specified in init-model
* Document --vectors-name argument to init-model
* Update website/docs/api/cli.md
Co-Authored-By: Ines Montani <ines@ines.io>
* Add doc.cats to spacy.gold at the paragraph level
Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.
* `spacy.gold.docs_to_json()` writes `docs.cats`
* `GoldCorpus` reads in cats in each `GoldParse`
* Update instances of gold_tuples to handle cats
Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.
* Add textcat to train CLI
* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
* For binary exclusive classes with provided label: F1 for label
* For 2+ exclusive classes: F1 macro average
* For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI
* Fix handling of unset arguments and config params
Fix handling of unset arguments and model confiug parameters in Scorer
initialization.
* Temporarily add sklearn requirement
* Remove sklearn version number
* Improve Scorer handling of models without textcats
* Fixing Scorer handling of models without textcats
* Update Scorer output for python 2.7
* Modify inf in Scorer for python 2.7
* Auto-format
Also make small adjustments to make auto-formatting with black easier and produce nicer results
* Move error message to Errors
* Update documentation
* Add cats to annotation JSON format [ci skip]
* Fix tpl flag and docs [ci skip]
* Switch to internal roc_auc_score
Switch to internal `roc_auc_score()` adapted from scikit-learn.
* Add AUCROCScore tests and improve errors/warnings
* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors
* Make reduced roc_auc_score functions private
Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.
* Check that data corresponds with multilabel flag
Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.
* Add textcat score to early stopping check
* Add more checks to debug-data for textcat
* Add example training data for textcat
* Add more checks to textcat train CLI
* Check configuration when extending base model
* Fix typos
* Update textcat example data
* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.
Co-authored-by: Ines Montani <ines@ines.io>
* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* typo fix
* add candidate API to kb documentation
* update API sidebar with EntityLinker and KnowledgeBase
* remove EL from 101 docs
* remove entity linker from 101 pipelines / rephrase
* custom el model instead of existing model
* set version to 2.2 for EL functionality
* update documentation for 2 CLI scripts
* Updates/bugfixes for NER/IOB converters
* Converter formats `ner` and `iob` use autodetect to choose a converter if
possible
* `iob2json` is reverted to handle sentence-per-line data like
`word1|pos1|ent1 word2|pos2|ent2`
* Fix bug in `merge_sentences()` so the second sentence in each batch isn't
skipped
* `conll_ner2json` is made more general so it can handle more formats with
whitespace-separated columns
* Supports all formats where the first column is the token and the final
column is the IOB tag; if present, the second column is the POS tag
* As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
separates documents
* Add option for segmenting sentences (new flag `-s`)
* Parser-based sentence segmentation with a provided model, otherwise with
sentencizer (new option `-b` to specify model)
* Can group sentences into documents with `n_sents` as long as sentence
segmentation is available
* Only applies automatic segmentation when there are no existing delimiters
in the data
* Provide info about settings applied during conversion with warnings and
suggestions if settings conflict or might not be not optimal.
* Add tests for common formats
* Add '(default)' back to docs for -c auto
* Add document count back to output
* Revert changes to converter output message
* Use explicit tabs in convert CLI test data
* Adjust/add messages for n_sents=1 default
* Add sample NER data to training examples
* Update README
* Add links in docs to example NER data
* Define msg within converters
* add `words`
* update name of entity list to `ner`
I think it might be a bit more consistent to have `ner` named `entities`
or `ents` (and `ents` is actually set somewhere to `None`, which is a
bit confusing), but it looks like renaming it would be a non-trivial
decision.
* Update pretrain to prevent unintended overwriting of weight files for #3859
* Add '--epoch-start' to pretrain docs
* Add mising pretrain arguments to bash example
* Update doc tag for v2.1.5
* Perserve flags in EntityRuler
The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized. This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.
* add signed contributor agreement
* flake8 cleanup
mostly blank line issues.
* mark test from the issue as needing a model
The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.
* Adds `phrase_matcher_attr` to allow args to PhraseMatcher
This is an added arg to pass to the `PhraseMatcher`. For example,
this allows creation of a case insensitive phrase matcher when the
`EntityRuler` is created. References explosion/spaCy#3822
* remove unneeded model loading
The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)
* updated docstring for new argument
* updated docs to reflect new argument to the EntityRuler constructor
* change tempdir handling to be compatible with python 2.7
* return conflicted code to entityruler
Some stuff got cut out because of merge conflicts, this
returns that code for the phrase_matcher_attr.
* fixed typo in the code added back after conflicts
* flake8 compliance
When I deconflicted the branch there were some flake8 issues
introduced. This resolves the spacing problems.
* test changes: attempts to fix flaky test in python3.5
These tests seem to be alittle flaky in 3.5 so I changed the check to avoid
the comparisons that seem to be fail sometimes.
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`
* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.
* Add missing quotation marks
* Update tokenizer.md for construction example
Self contained example. You should really say what nlp is so that the example will work as is
* Update CONTRIBUTOR_AGREEMENT.md
* Restore contributor agreement
* Adjust construction examples
* Add check for empty input file to CLI pretrain
* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key
* Skip empty values for correct pretrain keys and log a counter as warning
* Add tests for CLI pretrain core function make_docs.
* Add a short hint for the `tokens` key to the CLI pretrain docs
* Add success message to CLI pretrain
* Update model loading to fix the tests
* Skip empty values and do not create docs out of it
<!--- Provide a general summary of your changes in the title. -->
When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
To test...
Save this file to `sample_sents.jsonl`
```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```
Then run `--save-every 2` when pretraining.
```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```
And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.
At the end the training, you should see these files (`ls here/`):
```bash
config.json model2.bin model5.bin model8.bin
log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin model3.bin model6.bin model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin model4.bin model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
This is a new feature to `spacy pretrain`.
🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).**
```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
run(args.root)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
process(base, filename, db)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
func(*args)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
File "setup.py", line 276, in <module>
setup_package()
File "setup.py", line 209, in setup_package
generate_cython(root, "spacy")
File "setup.py", line 132, in generate_cython
raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```
Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* fix(util): fix decaying function output
* fix(util): better test and adhere to code standards
* fix(util): correct variable name, pytestify test, update website text