* Add check for empty input file to CLI pretrain
* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key
* Skip empty values for correct pretrain keys and log a counter as warning
* Add tests for CLI pretrain core function make_docs.
* Add a short hint for the `tokens` key to the CLI pretrain docs
* Add success message to CLI pretrain
* Update model loading to fix the tests
* Skip empty values and do not create docs out of it
* Update norm_exceptions.py
Extended the Currency set to include Franc, Indian Rupee, Bangladeshi Taka, Korean Won, Mexican Dollar, and Egyptian Pound
* Fix formatting [ci skip]
* Adding Marathi language details and folder to it
* Adding few changes and running tests
* Adding few changes and running tests
* Update __init__.py
mh -> mr
* Rename spacy/lang/mh/__init__.py to spacy/lang/mr/__init__.py
* mh -> mr
* Add custom __dir__ to Underscore (see #3707)
* Make sure custom extension methods keep their docstrings (see #3707)
* Improve tests
* Prepend note on partial to docstring (see #3707)
* Remove print statement
* Handle cases where docstring is None
* Update glossary.py to match information found in documentation
I used regexes to add any dependency tag that was in the documentation but not in the glossary. Solves #3679👍
* Adds forgotten colon
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
* add Thai norm_exception
* Add Dobita21 SCA
* editรึ : หรือ,
* Update Dobita21.md
* Auto-format
* Integrate norms into language defaults
* add acronym and some norm exception words
* add lex_attrs
* Add lexical attribute getters into the language defaults
* fix LEX_ATTRS
Co-authored-by: Donut <dobita21@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
* add Thai norm_exception
* Add Dobita21 SCA
* editรึ : หรือ,
* Update Dobita21.md
* Auto-format
* Integrate norms into language defaults
* add acronym and some norm exception words
<!--- Provide a general summary of your changes in the title. -->
When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
To test...
Save this file to `sample_sents.jsonl`
```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```
Then run `--save-every 2` when pretraining.
```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```
And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.
At the end the training, you should see these files (`ls here/`):
```bash
config.json model2.bin model5.bin model8.bin
log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin model3.bin model6.bin model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin model4.bin model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
This is a new feature to `spacy pretrain`.
🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).**
```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
run(args.root)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
process(base, filename, db)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
func(*args)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
File "setup.py", line 276, in <module>
setup_package()
File "setup.py", line 209, in setup_package
generate_cython(root, "spacy")
File "setup.py", line 132, in generate_cython
raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```
Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
* add Thai norm_exception
* Add Dobita21 SCA
* editรึ : หรือ,
* Update Dobita21.md
* Auto-format
* Integrate norms into language defaults
If the Morphology class tries to lemmatize a word that's not in the
string store, it's forced to just return it as-is. While loading
exceptions, the class could hit a case where these strings weren't in
the string store yet. The resulting lemmas could then be cached, leading
to some words receiving upper-case lemmas. Closes#3551.
* Add early stopping
* Add return_score option to evaluate
* Fix missing str to path conversion
* Fix import + old python compatibility
* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
* test sPacy commit to git fri 04052019 10:54
* change Data format from my format to master format
* ทัทั้งนี้ ---> ทั้งนี้
* delete stop_word translate from Eng
* Adjust formatting and readability
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
Co-authored-by: Ines Montani <ines@ines.io>
* added tag_map for indonesian
* changed tag map from .py to .txt to see if tests pass
* added symbols import
* added utf8 encoding flag
* added missing SCONJ symbol
* Auto-format
* Remove unused imports
* Make tag map available in Indonesian defaults
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Fix a bug in the test of JapaneseTokenizer.
This PR may require @polm's review.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
Bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* fix(util): fix decaying function output
* fix(util): better test and adhere to code standards
* fix(util): correct variable name, pytestify test, update website text
* Fix code for bag-of-words feature extraction
The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).
* Support 'bow' architecture for TextCategorizer
This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.
* Fix size limits in train_textcat example
* Explain architectures better in docs
v2.1 introduced a regression when deserializing the parser after
parser.add_label() had been called. The code around the class mapping is
pretty confusing currently, as it was written to accommodate backwards
model compatibility. It needs to be revised when the models are next
retrained.
Closes#3433
spaCy v2.1 switched to the built-in re module, where v2.0 had been using
the third-party regex library. When the tokenizer was deserialized on
Python2.7, the `re.compile()` function was called with expressions that
featured escaped unicode codepoints that were not in Python2.7's unicode
database.
Problems occurred when we had a range between two of these unknown
codepoints, like this:
```
'[\\uAA77-\\uAA79]'
```
On Python2.7, the unknown codepoints are not unescaped correctly,
resulting in arbitrary out-of-range characters being matched by the
expression.
This problem does not occur if we instead have a range between two
unicode literals, rather than the escape sequences. To fix the bug, we
therefore add a new compat function that unescapes unicode sequences
using the `ast.literal_eval()` function. Care is taken to ensure we
do not also escape non-unicode sequences.
Closes#3356.
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
I wrote a small script to read the UD English training data and check
that our tag map and morph rules were resulting in the best POS map.
This hadn't been done for some time, and there have been various changes
to the UD schema since it has been done. After these changes we should
see much better agreement between our POS assignments and the UD POS
tags.
While developing v2.1, I ran a bunch of hyper-parameter search
experiments to find settings that performed well for spaCy's NER and
parser. I ended up changing the default Adam settings from beta1=0.9,
beta2=0.999, eps=1e-8 to beta1=0.8, beta2=0.8, eps=1e-5. This was giving
a small improvement in accuracy (like, 0.4%).
Months later, I run the models with Prodigy, which uses beam-search
decoding even when the model has been trained with a greedy objective.
The new models performed terribly...So, wtf? After a couple of days
debugging, I figured out that the new optimizer settings was causing the
model to converge to solutions where the top-scoring class often had
a score of like, -80. The variance on the weights had gone up
enormously. I guess I needed to update the L2 regularisation as well?
Anyway. Let's just revert the change --- if the optimizer is finding
such extreme solutions, that seems bad, and not nearly worth the small
improvement in accuracy.
Currently training a slate of models, to verify the accuracy change is minimal.
Once the training is complete, we can merge this.
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
Add and document CLI options for batch size, max doc length, min doc length for `spacy pretrain`.
Also improve CLI output.
Closes#3216
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* merging conllu/conll and conllubio scripts
* tabs to spaces
* removing conllubio2json from converters/__init__.py
* Move not-really-CLI tests to misc
* Add converter test using no-ud data
* Fix test I broke
* removing include_biluo parameter
* fixing read_conllx
* remove include_biluo from convert.py
* label in span not writable anymore
* more explicit unit test and error message for readonly label
* bit more explanation (view)
* error msg tailored to specific case
* fix None case
Closes#2091.
## Description
With the new `vocab.writing_system` property introduced in #3390 (exposed via the language defaults), I was able to finally fix this (I think!). Based on the `Doc`, dispaCy now detects whether it's a RTL or LTR language and adjusts the visualization accordingly. Wherever possible, I've also added `direction` and `lang` attributes.
Entity visualization now looks like this:
<img width="318" alt="Screenshot 2019-03-11 at 16 06 51" src="https://user-images.githubusercontent.com/13643239/54136866-d97afd80-441c-11e9-8c27-3d46994cc833.png">
And dependencies like this (ignore the most likely incorrect tags and dependencies):
<img width="621" alt="Screenshot 2019-03-11 at 16 51 59" src="https://user-images.githubusercontent.com/13643239/54137771-8b66f980-441e-11e9-8460-0682b95eef2a.png">
### Types of change
enhancement, bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Add xfail test for vocab.writing_system
* Add vocab.writing_system property
* Set Language.Defaults.writing_system
* Set default writing system
* Remove xfail on test_vocab_writing_system
Closes#2203. Closes#3268.
Lemmas set from outside the `Morphology` class were being overwritten. The result was especially confusing when deserialising, as it meant some lemmas could change when storing and retrieving a `Doc` object.
This PR applies two fixes:
1) When we go to set the lemma in the `Morphology` class, first check whether a lemma is already set. If so, don't overwrite.
2) When we load with `doc.from_array()`, take care to apply the `TAG` field first. This allows other fields to overwrite the `TAG` implied properties, if they're provided explicitly (e.g. the `LEMMA`).
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Add component_cfg kwarg to begin_training
* Document component_cfg arg to begin_training
* Update docs and auto-format
* Support component_cfg across Language
* Format
* Update docs and docstrings [ci skip]
* Fix begin_training
* Make serialization methods consistent
exclude keyword argument instead of random named keyword arguments and deprecation handling
* Update docs and add section on serialization fields
* Use default return instead of else
* Add Doc.is_nered to indicate if entities have been set
* Add properties in Doc.to_json if they were set, not if they're available
This way, if a processed Doc exports "pos": None, it means that the tag was explicitly unset. If it exports "ents": [], it means that entity annotations are available but that this document doesn't contain any entities. Before, this would have been unclear and problematic for training.
<!--- Provide a general summary of your changes in the title. -->
## Description
* tidy up and adjust Cython code to code style
* improve docstrings and make calling `help()` nicer
* add URLs to new docs pages to docstrings wherever possible, mostly to user-facing objects
* fix various typos and inconsistencies in docs
### Types of change
enhancement, docs
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Improve handling of missing NER tags
GoldParse can accept missing NER tags, if entities is provided
in BILUO format (rather than as spans). Missing tags can be provided
as None values.
Fix bug that occurred when first tag was a None value. Closes#2603.
* Document specification of missing NER tags.
* Classes for Ukrainian; small fix in Russian.
* Contributor agreement
* pymorphy2 initialization split for ru and uk (#3327)
* stop-words fixed
* Unit-tests updated
<!--- Provide a general summary of your changes in the title. -->
## Description
This PR adds the abilility to override custom extension attributes during merging. This will only work for attributes that are writable, i.e. attributes registered with a default value like `default=False` or attribute that have both a getter *and* a setter implemented.
```python
Token.set_extension('is_musician', default=False)
doc = nlp("I like David Bowie.")
with doc.retokenize() as retokenizer:
attrs = {"LEMMA": "David Bowie", "_": {"is_musician": True}}
retokenizer.merge(doc[2:4], attrs=attrs)
assert doc[2].text == "David Bowie"
assert doc[2].lemma_ == "David Bowie"
assert doc[2]._.is_musician
```
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Keep TextCategorizer default model same as v2.0
* Add option 'architecture' that allows "simple_cnn" to switch to
simpler model.
* Add option exclusive_classes, defaulting to False. If set to True,
the model treats classes as mutually exclusive, i.e. only one class can
be true per instance.
* splitting up latin unicode interval
* removing hyphen as infix for French
* adding failing test for issue 1235
* test for issue #3002 which now works
* partial fix for issue #2070
* keep the hyphen as infix for French (as it was)
* restore french expressions with hyphen as infix (as it was)
* added succeeding unit test for Issue #2656
* Fix issue #2822 with custom Italian exception
* Fix issue #2926 by allowing numbers right before infix /
* splitting up latin unicode interval
* removing hyphen as infix for French
* adding failing test for issue 1235
* test for issue #3002 which now works
* partial fix for issue #2070
* keep the hyphen as infix for French (as it was)
* restore french expressions with hyphen as infix (as it was)
* added succeeding unit test for Issue #2656
* Fix issue #2822 with custom Italian exception
* Fix issue #2926 by allowing numbers right before infix /
* remove duplicate
* remove xfail for Issue #2179 fixed by Matt
* adjust documentation and remove reference to regex lib
* Fix matching on extension attrs and predicates
* Fix detection of match_id when using extension attributes. The match
ID is stored as the last entry in the pattern. We were checking for this
with nr_attr == 0, which didn't account for extension attributes.
* Fix handling of predicates. The wrong count was being passed through,
so even patterns that didn't have a predicate were being checked.
* Fix regex pattern
* Fix matcher set value test
* Change retokenize.split() API for heads
* Pass lists as values for attrs in split
* Fix test_doc_split filename
* Add error for mismatched tokens after split
* Raise error if new tokens don't match text
* Fix doc test
* Fix error
* Move deps under attrs
* Fix split tests
* Fix retokenize.split
* Add base classes for more languages
* Add test for language class initialization
Make sure language can be initialize – otherwise, it's difficult to catch serious errors in the test suite, because languages are lazy-loaded
* Add split one token into several (resolves#2838)
* Improve error message for token splitting
* Make retokenizer.split() tests use a Token object
Change retokenizer.split() to use a Token object, instead of an index.
* Pass Token into retokenize.split()
Tweak retokenize.split() API so that we pass the `Token` object, not the index.
* Fix token.idx in retokenize.split()
* Test that token.idx is correct after split
* Fix token.idx for split tokens
* Fix retokenize.split()
* Fix retokenize.split
* Fix retokenize.split() test
Otherwise, the true error that happens within a Language subclass is swallowed, because if it's imported lazily like that, it'll always be an ImportError
* Add custom MatchPatternError
* Improve validators and add validation option to Matcher
* Adjust formatting
* Never validate in Matcher within PhraseMatcher
If we do decide to make validate default to True, the PhraseMatcher's Matcher shouldn't ever validate. Here, we create the patterns automatically anyways (and it's currently unclear whether the validation has performance impacts at a very large scale).
In most cases, the PhraseMatcher will match on the verbatim token text or as of v2.1, sometimes the lowercase text. This means that we only need a tokenized Doc, without any other attributes.
If phrase patterns are created by processing large terminology lists with the full `nlp` object, this easily can make things a lot slower, because all components will be applied, even if we don't actually need the attributes they set (like part-of-speech tags, dependency labels).
The warning message also includes a suggestion to use nlp.make_doc or nlp.tokenizer.pipe for even faster processing. For now, the validation has to be enabled explicitly by setting validate=True.
* Improved stop words list
* Removed some wrong stop words form list
* Improved stop words list
* Removed some wrong stop words form list
* Improved Polish Tokenizer (#38)
* Add tests for polish tokenizer
* Add polish tokenizer exceptions
* Don't split any words containing hyphens
* Fix test case with wrong model answer
* Remove commented out line of code until better solution is found
* Add source srx' license
* Rename exception_list.py to match spaCy conventionality
* Add a brief explanation of where the exception list comes from
* Add newline after reach exception
* Rename COPYING.txt to LICENSE
* Delete old files
* Add header to the license
* Agreements signed
* Stanisław Giziński agreement
* Krzysztof Kowalczyk - signed agreement
* Mateusz Olko agreement
* Add DoomCoder's contributor agreement
* Improve like number checking in polish lang
* like num tests added
* all from SI system added
* Final licence and removed splitting exceptions
* Added polish stop words to LEX_ATTRA
* Add encoding info to pl tokenizer exceptions
## Description
1. Added the same infix rule as in French (`d'une`, `j'ai`) for Italian (`c'è`, `l'ha`), bringing F-score on `it_isdt-ud-train.txt` from 96% to 99%. Added unit test to check this behaviour.
2. Added specific Urdu punctuation character as suffix, improving F-score on `ur_udtb-ud-train.txt` from 94% to 100%. Added unit test to check this behaviour.
### Types of change
Enhancement of Italian & Urdu tokenization
## Checklist
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* replace unicode categories with raw list of code points
* simplifying ranges
* fixing variable length quotes
* removing redundant regular expression
* small cleanup of regexp notations
* quotes and alpha as ranges instead of alterations
* removed most regexp dependencies and features
* exponential backtracking - unit tests
* rewrote expression with pathological backtracking
* disabling double hyphen tests for now
* test additional variants of repeating punctuation
* remove regex and redundant backslashes from load_reddit script
* small typo fixes
* disable double punctuation test for russian
* clean up old comments
* format block code
* final cleanup
* naming consistency
* french strings as unicode for python 2 support
* french regular expression case insensitive
* modifying FR lookup to remove ambiguity and adding lookup vocab to FR files
* modifying FR lookup to remove ambiguity and adding lookup vocab to FR files
* updating the contributor agreement for amperinet
Resolves#3208.
Prevent interactions with other libraries (pandas) that also access `get_ipython().config` and its parameters. See #3208 for details. I don't fully understand why this happens, but in spaCy, we can at least make sure we avoid calling into this method.
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* running UD eval
* printing timing of tokenizer: tokens per second
* timing of default English model
* structured output and parameterization to compare different runs
* additional flag to allow evaluation without parsing info
* printing verbose log of errors for manual inspection
* printing over- and undersegmented cases (and combo's)
* add under and oversegmented numbers to Score and structured output
* print high-freq over/under segmented words and word shapes
* printing examples as part of the structured output
* print the results to file
* batch run of different models and treebanks per language
* cleaning up code
* commandline script to process all languages in spaCy & UD
* heuristic to remove blinded corpora and option to run one single best per language
* pathlib instead of os for file paths
* Update matcher engine for regex and extensions
Add support for matching over arbitrary Python predicate functions, and
arbitrary Python attribute getters. This will allow matching over regex
patterns, and allow supporting extension attributes.
The results of the Python predicate functions are cached, so that we don't
call the same predicate function twice for the same token. The extension
attributes are fetched into an array for each token in the doc. This
should minimise the performance impact of the new features.
We still need to wire up these features to the patterns, and test it
all.
* Work on wiring up extra attributes in matcher
* Work on tests for extra matcher attrs
* Add support for extension attrs to matcher
* Test extension attribute matching
* Work on implementing predicate-based match patterns
* Get predicates working for set membership
* Add test for set membership
* Make extensions+predicates work
* Test matcher extensions
* Cache predicate results better in Matcher
* Remove print statement in matcher test
* Use srsly to get key for predicates
* Added the same punctuation rules as danish language.
* Added abbreviations and also the possibility to have capitalized abbreviations on some. Added a few specific cases too
* Added test for long texts in swedish
* Added morph rules, infixes and suffixes to __init__.py for swedish
* Added some tests for prefixes, infixes and suffixes
* Added tests for lemma
* Renamed files to follow convention
* [sv] Removed ambigious abbreviations
* Added more tests for tokenizer exceptions
* Added test for problem with punctuation in issue #2578
* Contributor agreement
* Removed faulty lemmatization of 'jag' ('I') as it was lemmatized to 'jaga' ('hunt')
Tamil language support to spaCy
Description
Hereby, creating new PR to add support for Tamil language in spaCy
added stop words, examples and numerical attributes
<--Working on other language data-->
Types of change
Enhancement
Checklist
[ x] I have submitted the spaCy Contributor Agreement.
[x ] I ran the tests, and all new and existing tests passed.
[ x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* adding adverbs and irregular cases for empty words
* adding adverbs and irregular cases for empty words
* adding adverbs and irregular cases for empty words
* updating contributor agreement for amperinet
* modifying French lookup that contained wrong lemmas
* correcting wrong line breaks on hyphen
* adding contributor agreement for amperinet@
* correcting a typo
This PR adds a test for an untested case of `Span.get_lca_matrix`, and fixes a bug for that scenario, which I introduced in [this PR](https://github.com/explosion/spaCy/pull/3089) (sorry!).
## Description
The previous implementation of get_lca_matrix was failing for the case `doc[j:k].get_lca_matrix()` where `j > 0`. A test has been added for this case and the bug has been fixed.
### Types of change
Bug fix
## Checklist
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
If doc.from_array() was called with say, only entity information, this
would cause doc.is_tagged to be set to False, even if tags were set.
This caused tags to be dropped from serialisation. The same was true for
doc.is_parsed.
Closes#3012.
Initially span.as_doc() was designed to return a view of the span's contents, as a Doc object. This was a nice idea, but it fails due to the token.idx property, which refers to the character offset within the string. In a span, the idx of the first token might not be 0. Because this data is different, we can't have a view --- it'll be inconsistent.
This patch changes span.as_doc() to instead return a copy. The docs are updated accordingly. Closes#1537
* Update test for span.as_doc()
* Make span.as_doc() return a copy. Closes#1537
* Document change to Span.as_doc()
The doc.retokenize() context manager wasn't resizing doc.tensor, leading to a mismatch between the number of tokens in the doc and the number of rows in the tensor. We fix this by deleting rows from the tensor. Merged spans are represented by the vector of their last token.
* Add test for resizing doc.tensor when merging
* Add test for resizing doc.tensor when merging. Closes#1963
* Update get_lca_matrix test for develop
* Fix retokenize if tensor unset
<!--- Provide a general summary of your changes in the title. -->
## Description
See #3079. Here I'm merging into `develop` instead of `master`.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
Bug fix.
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Test on #2396: bug in Doc.get_lca_matrix()
* reimplementation of Doc.get_lca_matrix(), (closes#2396)
* reimplement Span.get_lca_matrix(), and call it from Doc.get_lca_matrix()
* tests Span.get_lca_matrix() as well as Doc.get_lca_matrix()
* implement _get_lca_matrix as a helper function in doc.pyx; call it from Doc.get_lca_matrix and Span.get_lca_matrix
* use memory view instead of np.ndarray in _get_lca_matrix (faster)
* fix bug when calling Span.get_lca_matrix; return lca matrix as np.array instead of memoryview
* cleaner conditional, add comment
* Test on #2396: bug in Doc.get_lca_matrix()
* reimplementation of Doc.get_lca_matrix(), (closes#2396)
* reimplement Span.get_lca_matrix(), and call it from Doc.get_lca_matrix()
* tests Span.get_lca_matrix() as well as Doc.get_lca_matrix()
* implement _get_lca_matrix as a helper function in doc.pyx; call it from Doc.get_lca_matrix and Span.get_lca_matrix
* use memory view instead of np.ndarray in _get_lca_matrix (faster)
* fix bug when calling Span.get_lca_matrix; return lca matrix as np.array instead of memoryview
* cleaner conditional, add comment
* Add failing test for matcher bug #3009
* Deduplicate matches from Matcher
* Update matcher ? quantifier test
* Fix bug with ? quantifier in Matcher
The ? quantifier indicates a token may occur zero or one times. If the
token pattern fit, the matcher would fail to consider valid matches
where the token pattern did not fit. Consider a simple regex like:
.?b
If we have the string 'b', the .? part will fit --- but then the 'b' in
the pattern will not fit, leaving us with no match. The same bug left us
with too few matches in some cases. For instance, consider:
.?.?
If we have a string of length two, like 'ab', we actually have three
possible matches here: [a, b, ab]. We were only recovering 'ab'. This
should now be fixed. Note that the fix also uncovered another bug, where
we weren't deduplicating the matches. There are actually two ways we
might match 'a' and two ways we might match 'b': as the second token of the pattern,
or as the first token of the pattern. This ambiguity is spurious, so we
need to deduplicate.
Closes#2464 and #3009
* Fix Python2
* Remove check for overwritten factory
This needs to be handled differently – on first initialization, a new factory will be added and any subsequent initializations will trigger this warning, even if it's a new entry point that doesn't overwrite a built-in.
* Add helper to only load specific entry point
Useful for loading languages via entry points, so that they can be lazy-loaded. Otherwise, all entry point languages would have to be loaded upfront.
* Check entry points for custom languages
## Description
- [x] fix auto-detection of Jupyter notebooks (even if `jupyter=True` isn't set)
- [x] add `displacy.set_render_wrapper` method to define a custom function called around the HTML markup generated in all calls to `displacy.render` (can be used to allow custom integrations, callbacks and page formatting)
- [x] add option to customise host for web server
- [x] show warning if `displacy.serve` is called from within Jupyter notebooks
- [x] move error message to `spacy.errors.Errors`.
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
The output weights often return negative scores for classes, especially
via the bias terms. This means that when we add a new class, we can't
rely on just zeroing the weights, or we'll end up with positive
predictions for those labels.
To solve this, we use nan values as the initial weights for new labels.
This prevents them from ever coming out on top. During backprop, we
replace the nan values with the minimum assigned score, so that we're
still able to learn these classes.
After creating a component, the `.model` attribute is left with the value `True`, to indicate it should be created later during `from_disk()`, `from_bytes()` or `begin_training()`. This had led to confusing errors if you try to use the component without initializing the model.
To fix this, we add a method `require_model()` to the `Pipe` base class. The `require_model()` method needs to be called at the start of the `.predict()` and `.update()` methods of the components. It raises a `ValueError` if the model is not initialized. An error message has been added to `spacy.errors`.
* issue #3012: add test
* add contributor aggreement
* Make test work without models and fix typos
ten.pos_ instead of ten.orth_ and comparison against "10" instead of integer 10
I have added alpha support for the Tagalog language from the Philippines. It is the basis for the country's national language Filipino. I have heavily based the format to the EN and ES languages.
I have provided several words in the lemmatizer lookup table, added stop words from a source, translated numeric words to its Tagalog counterpart, added some tokenizer exceptions, and kept the tag map the same as the English language.
While the alpha language passed the preliminary testing that you provided, I think it needs more data to be useful for most cases.
* Added alpha support for Tagalog language
* Edited contributor template
* Included SCA; Reverted templates
* Fixed SCA template
* Fixed changes in SCA template
* Try to implement cosine loss
This one seems to be correct? Still unsure, but it performs okay
* Try to implement the von Mises-Fisher loss
This one's definitely not right yet.
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
Support semi-supervised learning in spacy train
One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing.
Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning.
Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective.
Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage:
python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze
Implement rehearsal methods for pipeline components
The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows:
Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model.
Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details.
Implement rehearsal updates for tagger
Implement rehearsal updates for text categoriz
Currently the TextCategorizer defaults to a fairly complicated model, designed partly around the active learning requirements of Prodigy. The model's a bit slow, and not very GPU-friendly.
This patch implements a straightforward CNN model that still performs pretty well. The replacement model also makes it easy to use the LMAO pretraining, since most of the parameters are in the CNN.
The replacement model has a flag to specify whether labels are mutually exclusive, which defaults to True. This has been a common problem with the text classifier. We'll also now be able to support adding labels to pretrained models again.
Resolves#2934, #2756, #1798, #1748.
Fixes#3027.
* Allow Span.__init__ to take unicode values for the `label` argument.
* Allow `Span.label_` to be writeable.
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Add todo
* Auto-format
* Update wasabi pin
* Format training results with wasabi
* Remove loading animation from model saving
Currently behaves weirdly
* Inline messages
* Remove unnecessary path2str
Already taken care of by printer
* Inline messages in CLI
* Remove unused function
* Move loading indicator into loading function
* Check for invalid whitespace entities
See #3028. The solution in this patch is pretty debateable.
What we do is give the TokenC struct a .norm field, by repurposing the previously idle .sense attribute. It's nice to repurpose a previous field because it means the TokenC doesn't change size, so even if someone's using the internals very deeply, nothing will break.
The weird thing here is that the TokenC and the LexemeC both have an attribute named NORM. This arguably assists in backwards compatibility. On the other hand, maybe it's really bad! We're changing the semantics of the attribute subtly, so maybe it's better if someone calling lex.norm gets a breakage, and instead is told to write lex.default_norm?
Overall I believe this patch makes the NORM feature work the way we sort of expected it to work. Certainly it's much more like how the docs describe it, and more in line with how we've been directing people to use the norm attribute. We'll also be able to use token.norm to do stuff like spelling correction, which is pretty cool.
Fix a bug in the JSON streaming code that GoldCorpus uses. Escaped
slashes were being handled incorrectly. This bug caused low scores for
French in the early v2.1.0 alphas, because most of the data was not
being read in.
Fittingly, the document that triggered the bug was a Wikipedia article about
Perl. Parsing perl remains difficult!
* modifying FR lemmatization for nouns
* modifying FR lemmatization for nouns
* adding contributor agreement for amperinet
* adding rules for words with inclusive parentheses wrongly tokenized
* adding contributor agreement for amperinet
* adding a missing comma
* updating rules and vocabulary for French lemmatization of verbs
* updating the file with French auxiliary verb
* updating rules and vocabulary for French lemmatization of verbs
* adding contributor agreement for amperinet
* adding rules for words with inclusive parentheses wrongly tokenized
* Updated wordforms for Norwegian lemmatizer
Upload of updated lists of wordforms for the Norwegian lemmatizer (nouns, verbs, adverbs, adjectives and lookup).
* Add spaCy contributor agreement for user beatesi
* Updated wordforms for Norwegian lemmatizer
Remove hacks and wrappers, keep code in sync across our libraries and move spaCy a few steps closer to only depending on packages with binary wheels 🎉
See here: https://github.com/explosion/srsly
Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy have steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.
At the same time, we noticed that having a lot of small dependencies was making maintainence harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.
srsly currently includes forks of the following packages:
ujson
msgpack
msgpack-numpy
cloudpickle
* WIP: replace json/ujson with srsly
* Replace ujson in examples
Use regular json instead of srsly to make code easier to read and follow
* Update requirements
* Fix imports
* Fix typos
* Replace msgpack with srsly
* Fix warning
## Description
Fixes#2693
Previously, the tokens `sbd` and `sentencizer` would create the same nlp pipe. Internally, both would be called `sbd`. This setup became problematic because it was hard for a user relying on the `sentencizer` pipe name to realize that their pipe's name would be `sbd` for all functions other than creating a pipe. This PR intends to change the API and API documentation to fully support `sentencizer` and drop any user-facing references to `sbd`.
### Types of change
end-user API bug
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Support nowrap setting in util.prints
* Tidy up and fix whitespace
* Simplify script and use read_jsonl helper
* Add JSON schemas (see #2928)
* Deprecate Doc.print_tree
Will be replaced with Doc.to_json, which will produce a unified format
* Add Doc.to_json() method (see #2928)
Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.
* Remove outdated test
* Add write_json and write_jsonl helpers
* WIP: Update spacy train
* Tidy up spacy train
* WIP: Use wasabi for formatting
* Add GoldParse helpers for JSON format
* WIP: add debug-data command
* Fix typo
* Add missing import
* Update wasabi pin
* Add missing import
* 💫 Refactor CLI (#2943)
To be merged into #2932.
## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)
### Types of change
enhancement
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Update wasabi pin
* Delete old test
* Update errors
* Fix typo
* Tidy up and format remaining code
* Fix formatting
* Improve formatting of messages
* Auto-format remaining code
* Add tok2vec stuff to spacy.train
* Fix typo
* Update wasabi pin
* Fix path checks for when train() is called as function
* Reformat and tidy up pretrain script
* Update argument annotations
* Raise error if model language doesn't match lang
* Document new train command
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Use [`black`](https://github.com/ambv/black) to auto-format all `.py` files.
- [x] Update flake8 config to exclude very large files (lemmatization tables etc.)
- [x] Update code to be compatible with flake8 rules
- [x] Fix various small bugs, inconsistencies and messy stuff in the language data
- [x] Update docs to explain new code style (`black`, `flake8`, when to use `# fmt: off` and `# fmt: on` and what `# noqa` means)
Once #2932 is merged, which auto-formats and tidies up the CLI, we'll be able to run `flake8 spacy` actually get meaningful results.
At the moment, the code style and linting isn't applied automatically, but I'm hoping that the new [GitHub Actions](https://github.com/features/actions) will let us auto-format pull requests and post comments with relevant linting information.
### Types of change
enhancement, code style
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* additional unit test for new entr word not in other lists
* bugfix - unit test works
* use _latin_lower instead of alpha_lower for french
* revert back to ALPHA_LOWER (following the code for languages)
* contributor agreement
* Create aryaprabhudesai.md (#2681)
* Update _install.jade (#2688)
Typo fix: "models" -> "model"
* Add FAC to spacy.explain (resolves#2706)
* Remove docstrings for deprecated arguments (see #2703)
* When calling getoption() in conftest.py, pass a default option (#2709)
* When calling getoption() in conftest.py, pass a default option
This is necessary to allow testing an installed spacy by running:
pytest --pyargs spacy
* Add contributor agreement
* update bengali token rules for hyphen and digits (#2731)
* Less norm computations in token similarity (#2730)
* Less norm computations in token similarity
* Contributor agreement
* Remove ')' for clarity (#2737)
Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.
* added contributor agreement for mbkupfer (#2738)
* Basic support for Telugu language (#2751)
* Lex _attrs for polish language (#2750)
* Signed spaCy contributor agreement
* Added polish version of english lex_attrs
* Introduces a bulk merge function, in order to solve issue #653 (#2696)
* Fix comment
* Introduce bulk merge to increase performance on many span merges
* Sign contributor agreement
* Implement pull request suggestions
* Describe converters more explicitly (see #2643)
* Add multi-threading note to Language.pipe (resolves#2582) [ci skip]
* Fix formatting
* Fix dependency scheme docs (closes#2705) [ci skip]
* Don't set stop word in example (closes#2657) [ci skip]
* Add words to portuguese language _num_words (#2759)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Update Indonesian model (#2752)
* adding e-KTP in tokenizer exceptions list
* add exception token
* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception
* add tokenizer exceptions list
* combining base_norms with norm_exceptions
* adding norm_exception
* fix double key in lemmatizer
* remove unused import on punctuation.py
* reformat stop_words to reduce number of lines, improve readibility
* updating tokenizer exception
* implement is_currency for lang/id
* adding orth_first_upper in tokenizer_exceptions
* update the norm_exception list
* remove bunch of abbreviations
* adding contributors file
* Fixed spaCy+Keras example (#2763)
* bug fixes in keras example
* created contributor agreement
* Adding French hyphenated first name (#2786)
* Fix typo (closes#2784)
* Fix typo (#2795) [ci skip]
Fixed typo on line 6 "regcognizer --> recognizer"
* Adding basic support for Sinhala language. (#2788)
* adding Sinhala language package, stop words, examples and lex_attrs.
* Adding contributor agreement
* Updating contributor agreement
* Also include lowercase norm exceptions
* Fix error (#2802)
* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
* added spaCy Contributor Agreement
* Add charlax's contributor agreement (#2805)
* agreement of contributor, may I introduce a tiny pl languge contribution (#2799)
* Contributors agreement
* Contributors agreement
* Contributors agreement
* Add jupyter=True to displacy.render in documentation (#2806)
* Revert "Also include lowercase norm exceptions"
This reverts commit 70f4e8adf3.
* Remove deprecated encoding argument to msgpack
* Set up dependency tree pattern matching skeleton (#2732)
* Fix bug when too many entity types. Fixes#2800
* Fix Python 2 test failure
* Require older msgpack-numpy
* Restore encoding arg on msgpack-numpy
* Try to fix version pin for msgpack-numpy
* Update Portuguese Language (#2790)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols
* Extended punctuation and norm_exceptions in the Portuguese language
* Correct error in spacy universe docs concerning spacy-lookup (#2814)
* Update Keras Example for (Parikh et al, 2016) implementation (#2803)
* bug fixes in keras example
* created contributor agreement
* baseline for Parikh model
* initial version of parikh 2016 implemented
* tested asymmetric models
* fixed grevious error in normalization
* use standard SNLI test file
* begin to rework parikh example
* initial version of running example
* start to document the new version
* start to document the new version
* Update Decompositional Attention.ipynb
* fixed calls to similarity
* updated the README
* import sys package duh
* simplified indexing on mapping word to IDs
* stupid python indent error
* added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround
* Fix typo (closes#2815) [ci skip]
* Update regex version dependency
* Set version to 2.0.13.dev3
* Skip seemingly problematic test
* Remove problematic test
* Try previous version of regex
* Revert "Remove problematic test"
This reverts commit bdebbef455.
* Unskip test
* Try older version of regex
* 💫 Update training examples and use minibatching (#2830)
<!--- Provide a general summary of your changes in the title. -->
## Description
Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results.
### Types of change
enhancements
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Visual C++ link updated (#2842) (closes#2841) [ci skip]
* New landing page
* Add contribution agreement
* Correcting lang/ru/examples.py (#2845)
* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement
* Correct some grammatical inaccuracies in lang\ru\examples.py
* Move contributor agreement to separate file
* Set version to 2.0.13.dev4
* Add Persian(Farsi) language support (#2797)
* Also include lowercase norm exceptions
* Remove in favour of https://github.com/explosion/spaCy/graphs/contributors
* Rule-based French Lemmatizer (#2818)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Set version to 2.0.13
* Fix formatting and consistency
* Update docs for new version [ci skip]
* Increment version [ci skip]
* Add info on wheels [ci skip]
* Adding "This is a sentence" example to Sinhala (#2846)
* Add wheels badge
* Update badge [ci skip]
* Update README.rst [ci skip]
* Update murmurhash pin
* Increment version to 2.0.14.dev0
* Update GPU docs for v2.0.14
* Add wheel to setup_requires
* Import prefer_gpu and require_gpu functions from Thinc
* Add tests for prefer_gpu() and require_gpu()
* Update requirements and setup.py
* Workaround bug in thinc require_gpu
* Set version to v2.0.14
* Update push-tag script
* Unhack prefer_gpu
* Require thinc 6.10.6
* Update prefer_gpu and require_gpu docs [ci skip]
* Fix specifiers for GPU
* Set version to 2.0.14.dev1
* Set version to 2.0.14
* Update Thinc version pin
* Increment version
* Fix msgpack-numpy version pin
* Increment version
* Update version to 2.0.16
* Update version [ci skip]
* Redundant ')' in the Stop words' example (#2856)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Documentation improvement regarding joblib and SO (#2867)
Some documentation improvements
## Description
1. Fixed the dead URL to joblib
2. Fixed Stack Overflow brand name (with space)
### Types of change
Documentation
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* raise error when setting overlapping entities as doc.ents (#2880)
* Fix out-of-bounds access in NER training
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
* Change PyThaiNLP Url (#2876)
* Fix missing comma
* Add example showing a fix-up rule for space entities
* Set version to 2.0.17.dev0
* Update regex version
* Revert "Update regex version"
This reverts commit 62358dd867.
* Try setting older regex version, to align with conda
* Set version to 2.0.17
* Add spacy-js to universe [ci-skip]
* Add spacy-raspberry to universe (closes#2889)
* Add script to validate universe json [ci skip]
* Removed space in docs + added contributor indo (#2909)
* - removed unneeded space in documentation
* - added contributor info
* Allow input text of length up to max_length, inclusive (#2922)
* Include universe spec for spacy-wordnet component (#2919)
* feat: include universe spec for spacy-wordnet component
* chore: include spaCy contributor agreement
* Minor formatting changes [ci skip]
* Fix image [ci skip]
Twitter URL doesn't work on live site
* Check if the word is in one of the regular lists specific to each POS (#2886)
* 💫 Create random IDs for SVGs to prevent ID clashes (#2927)
Resolves#2924.
## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix typo [ci skip]
* fixes symbolic link on py3 and windows (#2949)
* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes#2948
* Update spacy/compat.py
Co-Authored-By: cicorias <cicorias@users.noreply.github.com>
* Fix formatting
* Update universe [ci skip]
* Catalan Language Support (#2940)
* Catalan language Support
* Ddding Catalan to documentation
* Sort languages alphabetically [ci skip]
* Update tests for pytest 4.x (#2965)
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix regex pin to harmonize with conda (#2964)
* Update README.rst
* Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977)
Fixes#2976
* Fix typo
* Fix typo
* Remove duplicate file
* Require thinc 7.0.0.dev2
Fixes bug in gpu_ops that would use cupy instead of numpy on CPU
* Add missing import
* Fix error IDs
* Fix tests
These experiments were completed a few weeks ago, but I didn't make the PR, pending model release.
Token vector width: 128->96
Hidden width: 128->64
Embed size: 5000->2000
Dropout: 0.2->0.1
Updated optimizer defaults (unclear how important?)
This should improve speed, model size and load time, while keeping
similar or slightly better accuracy.
The tl;dr is we prefer to prevent over-fitting by reducing model size,
rather than using more dropout.
* Auto-format tests with black
* Add flake8 config
* Tidy up and remove unused imports
* Fix redefinitions of test functions
* Replace orths_and_spaces with words and spaces
* Fix compatibility with pytest 4.0
* xfail test for now
Test was previously overwritten by following test due to naming conflict, so failure wasn't reported
* Unfail passing test
* Only use fixture via arguments
Fixes pytest 4.0 compatibility
Our epic matrix multiplication odyssey is drawing to a close...
I've now finally got the Blis linear algebra routines in a self-contained Python package, with wheels for Windows, Linux and OSX. The only missing platform at the moment is Windows Python 2.7. The result is at https://github.com/explosion/cython-blis
Thinc v7.0.0 will make the change to Blis. I've put a Thinc v7.0.0.dev0 up on PyPi so that we can test these changes with the CI, and even get them out to spacy-nightly, before Thinc v7.0.0 is released. This PR also updates the other dependencies to be in line with the current versions master is using. I've also resolved the msgpack deprecation problems, and gotten spaCy and Thinc up to date with the latest Cython.
The point of switching to Blis is to have control of how our matrix multiplications are executed across platforms. When we were using numpy for this, a different library would be used on pip and conda, OSX would use Accelerate, etc. This would open up different bugs and performance problems, especially when multi-threading was introduced.
With the change to Blis, we now strictly single-thread the matrix multiplications. This will make it much easier to use multiprocessing to parallelise the runtime, since we won't have nested parallelism problems to deal with.
* Use blis
* Use -2 arg to Cython
* Update dependencies
* Fix requirements
* Update setup dependencies
* Fix requirement typo
* Fix msgpack errors
* Remove Python27 test from Appveyor, until Blis works there
* Auto-format setup.py
* Fix murmurhash version
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes#2948
* Update spacy/compat.py
Co-Authored-By: cicorias <cicorias@users.noreply.github.com>
Resolves#2924.
## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Allow matching non-orth attributes in PhraseMatcher (see #1971)
Usage: PhraseMatcher(nlp.vocab, attr='POS')
* Allow attr argument to be int
* Fix formatting
* Fix typo
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement
* Correct some grammatical inaccuracies in lang\ru\examples.py
* Move contributor agreement to separate file
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols
* Extended punctuation and norm_exceptions in the Portuguese language
* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
* added spaCy Contributor Agreement
Add a new class for the Tagger model, MultiSoftmax. This allows softmax
prediction of multiple classes on the same output layer, e.g. one
variable with 3 classes, another with 4 classes. This makes a layer with
7 output neurons, which we softmax into two distributions.
The set_children_from_heads function assumed parse trees were
projective. However, non-projective parses may be passed in during
deserialization, or after deprojectivising. This caused incorrect
sentence boundaries to be set for non-projective parses. Close#2772.
* adding e-KTP in tokenizer exceptions list
* add exception token
* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception
* add tokenizer exceptions list
* combining base_norms with norm_exceptions
* adding norm_exception
* fix double key in lemmatizer
* remove unused import on punctuation.py
* reformat stop_words to reduce number of lines, improve readibility
* updating tokenizer exception
* implement is_currency for lang/id
* adding orth_first_upper in tokenizer_exceptions
* update the norm_exception list
* remove bunch of abbreviations
* adding contributors file
Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.
* When calling getoption() in conftest.py, pass a default option
This is necessary to allow testing an installed spacy by running:
pytest --pyargs spacy
* Add contributor agreement
* subword_features: Controls whether subword features are used in the
word embeddings. True by default (specifically, prefix, suffix and word
shape). Should be set to False for languages like Chinese and Japanese.
* conv_depth: Depth of the convolutional layers. Defaults to 4.
The parser.begin_training() method was rewritten in v2.1. The rewrite
introduced a regression, where if you added labels prior to
begin_training(), these labels were discarded. This patch fixes that.
Our JSON training format is annoying to work with, and we've wanted to
retire it for some time. In the meantime, we can at least add some
missing functions to make it easier to live with.
This patch adds a function that generates the JSON format from a list
of Doc objects, one per paragraph. This should be a convenient way to handle
a lot of data conversions: whatever format you have the source
information in, you can use it to setup a Doc object. This approach
should offer better future-proofing as well. Hopefully, we can steadily
rewrite code that is sensitive to the current data-format, so that it
instead goes through this function. Then when we change the data format,
we won't have such a problem.